=================================================================== RCS file: /home/cvs/OpenXM/src/R/r-packages/hgm/man/hgm.c2wishart.Rd,v retrieving revision 1.1 retrieving revision 1.3 diff -u -p -r1.1 -r1.3 --- OpenXM/src/R/r-packages/hgm/man/hgm.c2wishart.Rd 2016/02/13 06:47:50 1.1 +++ OpenXM/src/R/r-packages/hgm/man/hgm.c2wishart.Rd 2016/02/13 22:56:50 1.3 @@ -1,10 +1,10 @@ -% $OpenXM$ +% $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm.c2wishart.Rd,v 1.2 2016/02/13 07:12:52 takayama Exp $ \name{hgm.p2wishart} \alias{hgm.p2wishart} %- Also NEED an '\alias' for EACH other topic documented here. \title{ The function hgm.p2wishart evaluates the cumulative distribution function - of the largest eigenvalues of inverse(S2)*S1. + of the largest eigenvalues of W1*inverse(W2). } \description{ The function hgm.p2wishart evaluates the cumulative distribution function @@ -13,7 +13,7 @@ } \usage{ hgm.p2wishart(m,n1,n2,beta,q0,approxdeg,h,dp,q,mode,method, - err,automatic,assigned_series_error,verbose) + err,automatic,assigned_series_error,verbose,autoplot) } %- maybe also 'usage' for other objects documented here. \arguments{ @@ -34,6 +34,7 @@ hgm.p2wishart(m,n1,n2,beta,q0,approxdeg,h,dp,q,mode,me } \item{dp}{ Sampling interval of solutions by the Runge-Kutta method. + When autoplot=1, dp is automatically set. } \item{q}{ The second value y[0] of this function is the Prob(L1 < q) @@ -41,9 +42,10 @@ hgm.p2wishart(m,n1,n2,beta,q0,approxdeg,h,dp,q,mode,me } \item{mode}{ When mode=c(1,0,0), it returns the evaluation - of the matrix hypergeometric series and its derivatives at x0. + of the matrix hypergeometric series and its derivatives at q0. When mode=c(1,1,(m^2+1)*p), intermediate values of P(L1 < x) with respect to p-steps of x are also returned. Sampling interval is controled by dp. + When autoplot=1, mode is automatically set. } \item{method}{ a-rk4 is the default value. @@ -72,14 +74,18 @@ hgm.p2wishart(m,n1,n2,beta,q0,approxdeg,h,dp,q,mode,me If it is 1, then steps of automatic degree updates and several parameters are output to stdout and stderr. } + \item{autoplot}{ + autoplot=0 is the default value. + If it is 1, then it outputs an input for plot. + } } \details{ It is evaluated by the Koev-Edelman algorithm when x is near the origin and by the HGM when x is far from the origin. We can obtain more accurate result when the variables h is smaller, - x0 is relevant value (not very big, not very small), + q0 is relevant value (not very big, not very small), and the approxdeg is more larger. - A heuristic method to set parameters x0, h, approxdeg properly + A heuristic method to set parameters q0, h, approxdeg properly is to make x larger and to check if the y[0] approaches to 1. % \code{\link[RCurl]{postForm}}. } @@ -119,8 +125,13 @@ hgm.p2wishart(m=3,n1=5,n2=10,beta=c(1,2,4),q=4) ## ===================================================== ## Example 2. ## ===================================================== -b<-hgm.p2wishart(m=3,n1=5,n2=10,beta=c(1,2,4),q0=0.1,q=20,approxdeg=20,mode=c(1,1,(8+1)*100)); -c<-matrix(b,ncol=16+1,byrow=1); +b<-hgm.p2wishart(m=3,n1=5,n2=10,beta=c(1,2,4),q0=0.3,q=20,approxdeg=20,mode=c(1,1,(8+1)*1000)); +c<-matrix(b,ncol=8+1,byrow=1); +#plot(c) +## ===================================================== +## Example 3. +## ===================================================== +c<-hgm.p2wishart(m=3,n1=5,n2=10,beta=c(1,2,4),q0=0.3,q=20,approxdeg=20,autoplot=1); #plot(c) } % Add one or more standard keywords, see file 'KEYWORDS' in the