=================================================================== RCS file: /home/cvs/OpenXM/src/R/r-packages/hgm/man/hgm.c2wishart.Rd,v retrieving revision 1.2 retrieving revision 1.4 diff -u -p -r1.2 -r1.4 --- OpenXM/src/R/r-packages/hgm/man/hgm.c2wishart.Rd 2016/02/13 07:12:52 1.2 +++ OpenXM/src/R/r-packages/hgm/man/hgm.c2wishart.Rd 2016/02/14 00:21:50 1.4 @@ -1,10 +1,10 @@ -% $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm.c2wishart.Rd,v 1.1 2016/02/13 06:47:50 takayama Exp $ +% $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm.c2wishart.Rd,v 1.3 2016/02/13 22:56:50 takayama Exp $ \name{hgm.p2wishart} \alias{hgm.p2wishart} %- Also NEED an '\alias' for EACH other topic documented here. \title{ The function hgm.p2wishart evaluates the cumulative distribution function - of the largest eigenvalues of inverse(S2)*S1. + of the largest eigenvalues of W1*inverse(W2). } \description{ The function hgm.p2wishart evaluates the cumulative distribution function @@ -34,6 +34,7 @@ hgm.p2wishart(m,n1,n2,beta,q0,approxdeg,h,dp,q,mode,me } \item{dp}{ Sampling interval of solutions by the Runge-Kutta method. + When autoplot=1, dp is automatically set. } \item{q}{ The second value y[0] of this function is the Prob(L1 < q) @@ -41,9 +42,10 @@ hgm.p2wishart(m,n1,n2,beta,q0,approxdeg,h,dp,q,mode,me } \item{mode}{ When mode=c(1,0,0), it returns the evaluation - of the matrix hypergeometric series and its derivatives at x0. + of the matrix hypergeometric series and its derivatives at q0. When mode=c(1,1,(m^2+1)*p), intermediate values of P(L1 < x) with respect to p-steps of x are also returned. Sampling interval is controled by dp. + When autoplot=1, mode is automatically set. } \item{method}{ a-rk4 is the default value. @@ -75,15 +77,16 @@ hgm.p2wishart(m,n1,n2,beta,q0,approxdeg,h,dp,q,mode,me \item{autoplot}{ autoplot=0 is the default value. If it is 1, then it outputs an input for plot. + When ans is the output, ans[1,] is c(q,prob at q,...), ans[2,] is c(q0,prob at q0,...), and ans[3,] is c(q0+q/100,prob at q/100,...), ... } } \details{ It is evaluated by the Koev-Edelman algorithm when x is near the origin and by the HGM when x is far from the origin. We can obtain more accurate result when the variables h is smaller, - x0 is relevant value (not very big, not very small), + q0 is relevant value (not very big, not very small), and the approxdeg is more larger. - A heuristic method to set parameters x0, h, approxdeg properly + A heuristic method to set parameters q0, h, approxdeg properly is to make x larger and to check if the y[0] approaches to 1. % \code{\link[RCurl]{postForm}}. }