[BACK]Return to hgm.c2wishart.Rd CVS log [TXT][DIR] Up to [local] / OpenXM / src / R / r-packages / hgm / man

Annotation of OpenXM/src/R/r-packages/hgm/man/hgm.c2wishart.Rd, Revision 1.6

1.6     ! takayama    1: % $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm.c2wishart.Rd,v 1.5 2016/02/15 07:42:07 takayama Exp $
1.1       takayama    2: \name{hgm.p2wishart}
                      3: \alias{hgm.p2wishart}
                      4: %- Also NEED an '\alias' for EACH other topic documented here.
                      5: \title{
                      6:     The function hgm.p2wishart evaluates the cumulative distribution function
1.3       takayama    7:   of the largest eigenvalues of W1*inverse(W2).
1.1       takayama    8: }
                      9: \description{
                     10:     The function hgm.p2wishart evaluates the cumulative distribution function
                     11:   of the largest eigenvalues of W1*inverse(W2) where W1 and W2 are Wishart
                     12:   matrices of size m*m of the freedom n1 and n2 respectively.
                     13: }
                     14: \usage{
                     15: hgm.p2wishart(m,n1,n2,beta,q0,approxdeg,h,dp,q,mode,method,
1.2       takayama   16:             err,automatic,assigned_series_error,verbose,autoplot)
1.1       takayama   17: }
                     18: %- maybe also 'usage' for other objects documented here.
                     19: \arguments{
                     20:   \item{m}{The dimension of the Wishart matrix.}
                     21:   \item{n1}{The degree of freedome of the Wishart distribution S1}
                     22:   \item{n2}{The degree of freedome of the Wishart distribution S2}
                     23:   \item{beta}{The eigenvalues of inverse(S2)*S1 where S1 and S2 are
                     24:     covariant matrices of W1 and W2 respectively.
                     25:   }
                     26:   \item{q0}{The point to evaluate the matrix hypergeometric series. q0>0}
                     27:   \item{approxdeg}{
                     28:     Zonal polynomials upto the approxdeg are calculated to evaluate
                     29:    values near the origin. A zonal polynomial is determined by a given
                     30:    partition (k1,...,km). We call the sum k1+...+km the degree.
                     31:   }
                     32:   \item{h}{
                     33:    A (small) step size for the Runge-Kutta method. h>0.
                     34:   }
                     35:   \item{dp}{
                     36:     Sampling interval of solutions by the Runge-Kutta method.
1.3       takayama   37:     When autoplot=1, dp is automatically set.
1.1       takayama   38:   }
                     39:   \item{q}{
                     40:     The second value y[0] of this function is the Prob(L1 < q)
                     41:     where L1 is the first eigenvalue of the Wishart matrix.
                     42:   }
                     43:   \item{mode}{
                     44:     When mode=c(1,0,0), it returns the evaluation
1.3       takayama   45:     of the matrix hypergeometric series and its derivatives at q0.
1.5       takayama   46:     When mode=c(1,1,(2^m+1)*p), intermediate values of P(L1 < x) with respect to
1.1       takayama   47:     p-steps of x are also returned.  Sampling interval is controled by dp.
1.3       takayama   48:     When autoplot=1, mode is automatically set.
1.1       takayama   49:   }
                     50:   \item{method}{
                     51:     a-rk4 is the default value.
                     52:     When method="a-rk4", the adaptive Runge-Kutta method is used.
                     53:     Steps are automatically adjusted by err.
                     54:   }
                     55:   \item{err}{
                     56:     When err=c(e1,e2), e1 is the absolute error and e2 is the relative error.
1.5       takayama   57:     This parameter controls the adative Runge-Kutta method.
                     58:     If the output is absurd, you may get a correct answer by setting,  e.g.,
1.6     ! takayama   59:     err=c(1e-(xy+5), 1e-10) or by increasing q0 when initial value at q0 is very small as 1e-xy.
1.1       takayama   60:   }
                     61:   \item{automatic}{
                     62:     automatic=1 is the default value.
                     63:     If it is 1, the degree of the series approximation will be increased until
                     64:     |(F(i)-F(i-1))/F(i-1)| < assigned_series_error where
                     65:     F(i) is the degree i approximation of the hypergeometric series
                     66:     with matrix argument.
                     67:     Step sizes for the Runge-Kutta method are also set automatically from
                     68:     the assigned_series_error if it is 1.
                     69:   }
                     70:   \item{assigned_series_error}{
                     71:     assigned_series_error=0.00001 is the default value.
                     72:   }
                     73:   \item{verbose}{
                     74:     verbose=0 is the default value.
                     75:     If it is 1, then steps of automatic degree updates and several parameters
                     76:     are output to stdout and stderr.
                     77:   }
1.2       takayama   78:   \item{autoplot}{
                     79:     autoplot=0 is the default value.
1.6     ! takayama   80:     If it is 1, then this function outputs an input for plot
        !            81:     (which is equivalent to setting the 3rd argument of the mode parameter properly).
1.4       takayama   82:     When ans is the output, ans[1,] is c(q,prob at q,...), ans[2,] is c(q0,prob at q0,...), and ans[3,] is c(q0+q/100,prob at q/100,...), ...
1.6     ! takayama   83:     When the adaptive Runge-Kutta method is used, the step size h may change
        !            84:     automatically,
        !            85:     which  makes the sampling period change, in other words, the sampling points
        !            86:    q0+q/100, q0+2*q/100, q0+3*q/100, ... may  change.
        !            87:    In this case, the output matrix may contain zero rows in the tail or overfull.
        !            88:    In case of the overful, use the mode option to get the all result.
1.2       takayama   89:   }
1.1       takayama   90: }
                     91: \details{
                     92:   It is evaluated by the Koev-Edelman algorithm when x is near the origin and
                     93:   by the HGM when x is far from the origin.
                     94:   We can obtain more accurate result when the variables h is smaller,
1.3       takayama   95:   q0 is relevant value (not very big, not very small),
1.1       takayama   96:   and the approxdeg is more larger.
1.3       takayama   97:   A heuristic method to set parameters q0, h, approxdeg properly
1.1       takayama   98:   is to make x larger and to check if the y[0] approaches to 1.
                     99: %  \code{\link[RCurl]{postForm}}.
                    100: }
                    101: \value{
                    102: The output is x, y[0], ..., y[2^m] in the default mode,
                    103: y[0] is the value of the cumulative distribution
                    104: function P(L1 < x) at x.  y[1],...,y[2^m] are some derivatives.
                    105: See the reference below.
                    106: }
                    107: \references{
                    108: H.Hashiguchi, N.Takayama, A.Takemura,
                    109: in preparation.
                    110: }
                    111: \author{
                    112: Nobuki Takayama
                    113: }
                    114: \note{
                    115: This function does not work well under the following cases:
                    116: 1. The beta (the set of eigenvalues)
                    117: is degenerated or is almost degenerated.
                    118: 2. The beta is very skew, in other words, there is a big eigenvalue
                    119: and there is also a small eigenvalue.
                    120: The error control is done by a heuristic method.
                    121: The obtained value is not validated automatically.
                    122: }
                    123:
                    124: %% ~Make other sections like Warning with \section{Warning }{....} ~
                    125:
                    126: %\seealso{
                    127: %%%\code{\link{oxm.matrix_r2tfb}}
                    128: %}
                    129: \examples{
                    130: ## =====================================================
                    131: ## Example 1.
                    132: ## =====================================================
                    133: hgm.p2wishart(m=3,n1=5,n2=10,beta=c(1,2,4),q=4)
                    134: ## =====================================================
                    135: ## Example 2.
                    136: ## =====================================================
1.2       takayama  137: b<-hgm.p2wishart(m=3,n1=5,n2=10,beta=c(1,2,4),q0=0.3,q=20,approxdeg=20,mode=c(1,1,(8+1)*1000));
                    138: c<-matrix(b,ncol=8+1,byrow=1);
                    139: #plot(c)
                    140: ## =====================================================
                    141: ## Example 3.
                    142: ## =====================================================
                    143: c<-hgm.p2wishart(m=3,n1=5,n2=10,beta=c(1,2,4),q0=0.3,q=20,approxdeg=20,autoplot=1);
1.1       takayama  144: #plot(c)
                    145: }
                    146: % Add one or more standard keywords, see file 'KEYWORDS' in the
                    147: % R documentation directory.
                    148: \keyword{ Cumulative distribution function of random two wishart matrices }
                    149: \keyword{ Holonomic gradient method }
                    150: \keyword{ HGM }
                    151:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>