[BACK]Return to hgm.cwishart.Rd CVS log [TXT][DIR] Up to [local] / OpenXM / src / R / r-packages / hgm / man

Annotation of OpenXM/src/R/r-packages/hgm/man/hgm.cwishart.Rd, Revision 1.16

1.16    ! takayama    1: % $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm.cwishart.Rd,v 1.15 2016/03/01 07:29:18 takayama Exp $
1.4       takayama    2: \name{hgm.pwishart}
                      3: \alias{hgm.pwishart}
1.1       takayama    4: %- Also NEED an '\alias' for EACH other topic documented here.
                      5: \title{
1.4       takayama    6:     The function hgm.pwishart evaluates the cumulative distribution function
1.7       takayama    7:   of random wishart matrices.
1.1       takayama    8: }
                      9: \description{
1.4       takayama   10:     The function hgm.pwishart evaluates the cumulative distribution function
1.7       takayama   11:   of random wishart matrices of size m times m.
1.1       takayama   12: }
                     13: \usage{
1.9       takayama   14: hgm.pwishart(m,n,beta,q0,approxdeg,h,dp,q,mode,method,
1.12      takayama   15:             err,automatic,assigned_series_error,verbose,autoplot)
1.1       takayama   16: }
                     17: %- maybe also 'usage' for other objects documented here.
                     18: \arguments{
1.2       takayama   19:   \item{m}{The dimension of the Wishart matrix.}
                     20:   \item{n}{The degree of freedome (a parameter of the Wishart distribution)}
1.3       takayama   21:   \item{beta}{The eigenvalues of the inverse of the covariant matrix /2
                     22: (a parameter of the Wishart distribution).
                     23:     The beta is equal to inverse(sigma)/2.
1.1       takayama   24:   }
1.4       takayama   25:   \item{q0}{The point to evaluate the matrix hypergeometric series. q0>0}
1.1       takayama   26:   \item{approxdeg}{
1.2       takayama   27:     Zonal polynomials upto the approxdeg are calculated to evaluate
                     28:    values near the origin. A zonal polynomial is determined by a given
                     29:    partition (k1,...,km). We call the sum k1+...+km the degree.
1.1       takayama   30:   }
                     31:   \item{h}{
1.2       takayama   32:    A (small) step size for the Runge-Kutta method. h>0.
1.1       takayama   33:   }
                     34:   \item{dp}{
1.2       takayama   35:     Sampling interval of solutions by the Runge-Kutta method.
1.15      takayama   36:     When autoplot=1 or dp is negative, it is automatically set.
                     37:     if it is 0, no sample is stored.
1.2       takayama   38:   }
1.4       takayama   39:   \item{q}{
                     40:     The second value y[0] of this function is the Prob(L1 < q)
1.2       takayama   41:     where L1 is the first eigenvalue of the Wishart matrix.
1.1       takayama   42:   }
1.3       takayama   43:   \item{mode}{
                     44:     When mode=c(1,0,0), it returns the evaluation
1.11      takayama   45:     of the matrix hypergeometric series and its derivatives at q0.
1.13      takayama   46:     When mode=c(1,1,(2^m+1)*p), intermediate values of P(L1 < x) with respect to
1.3       takayama   47:     p-steps of x are also returned.  Sampling interval is controled by dp.
1.12      takayama   48:     When autoplot=1, it is automatically set.
1.3       takayama   49:   }
                     50:   \item{method}{
1.5       takayama   51:     a-rk4 is the default value.
1.3       takayama   52:     When method="a-rk4", the adaptive Runge-Kutta method is used.
                     53:     Steps are automatically adjusted by err.
                     54:   }
                     55:   \item{err}{
                     56:     When err=c(e1,e2), e1 is the absolute error and e2 is the relative error.
1.13      takayama   57:     This parameter controls the adative Runge-Kutta method.
                     58:     If the output is absurd, you may get a correct answer by setting,  e.g.,
1.14      takayama   59:     err=c(1e-(xy+5), 1e-10) or by increasing q0 when initial value at q0 is very small as 1e-xy.
1.3       takayama   60:   }
1.5       takayama   61:   \item{automatic}{
                     62:     automatic=1 is the default value.
                     63:     If it is 1, the degree of the series approximation will be increased until
                     64:     |(F(i)-F(i-1))/F(i-1)| < assigned_series_error where
                     65:     F(i) is the degree i approximation of the hypergeometric series
                     66:     with matrix argument.
1.6       takayama   67:     Step sizes for the Runge-Kutta method are also set automatically from
                     68:     the assigned_series_error if it is 1.
1.5       takayama   69:   }
                     70:   \item{assigned_series_error}{
                     71:     assigned_series_error=0.00001 is the default value.
                     72:   }
                     73:   \item{verbose}{
                     74:     verbose=0 is the default value.
                     75:     If it is 1, then steps of automatic degree updates and several parameters
                     76:     are output to stdout and stderr.
                     77:   }
1.12      takayama   78:   \item{autoplot}{
                     79:     autoplot=0 is the default value.
1.14      takayama   80:     If it is 1, then this function outputs an input for plot
                     81:     (which is equivalent to setting the 3rd argument of the mode parameter properly).
1.12      takayama   82:     When ans is the output, ans[1,] is c(q,prob at q,...), ans[2,] is c(q0,prob at q0,...), and ans[3,] is c(q0+q/100,prob at q/100,...), ...
1.14      takayama   83:     When the adaptive Runge-Kutta method is used, the step size h may change
                     84:     automatically,
                     85:     which  makes the sampling period change, in other words, the sampling points
                     86:    q0+q/100, q0+2*q/100, q0+3*q/100, ... may  change.
                     87:    In this case, the output matrix may contain zero rows in the tail or overfull.
                     88:    In case of the overful, use the mode option to get the all result.
1.12      takayama   89:   }
1.1       takayama   90: }
                     91: \details{
1.2       takayama   92:   It is evaluated by the Koev-Edelman algorithm when x is near the origin and
                     93:   by the HGM when x is far from the origin.
1.3       takayama   94:   We can obtain more accurate result when the variables h is smaller,
1.11      takayama   95:   q0 is relevant value (not very big, not very small),
1.2       takayama   96:   and the approxdeg is more larger.
1.11      takayama   97:   A heuristic method to set parameters q0, h, approxdeg properly
1.3       takayama   98:   is to make x larger and to check if the y[0] approaches to 1.
1.1       takayama   99: %  \code{\link[RCurl]{postForm}}.
                    100: }
                    101: \value{
1.3       takayama  102: The output is x, y[0], ..., y[2^m] in the default mode,
1.2       takayama  103: y[0] is the value of the cumulative distribution
                    104: function P(L1 < x) at x.  y[1],...,y[2^m] are some derivatives.
                    105: See the reference below.
1.1       takayama  106: }
                    107: \references{
1.2       takayama  108: H.Hashiguchi, Y.Numata, N.Takayama, A.Takemura,
1.6       takayama  109: Holonomic gradient method for the distribution function of the largest root of a Wishart matrix,
                    110: Journal of Multivariate Analysis, 117, (2013) 296-312,
1.16    ! takayama  111: \doi{10.1016/j.jmva.2013.03.011},
1.1       takayama  112: }
                    113: \author{
                    114: Nobuki Takayama
                    115: }
                    116: \note{
1.7       takayama  117: This function does not work well under the following cases:
                    118: 1. The beta (the set of eigenvalues)
                    119: is degenerated or is almost degenerated.
                    120: 2. The beta is very skew, in other words, there is a big eigenvalue
                    121: and there is also a small eigenvalue.
                    122: The error control is done by a heuristic method.
                    123: The obtained value is not validated automatically.
1.1       takayama  124: }
                    125:
                    126: %% ~Make other sections like Warning with \section{Warning }{....} ~
                    127:
1.10      takayama  128: %\seealso{
                    129: %%%\code{\link{oxm.matrix_r2tfb}}
                    130: %}
1.1       takayama  131: \examples{
                    132: ## =====================================================
1.3       takayama  133: ## Example 1.
1.1       takayama  134: ## =====================================================
1.4       takayama  135: hgm.pwishart(m=3,n=5,beta=c(1,2,3),q=10)
1.3       takayama  136: ## =====================================================
                    137: ## Example 2.
                    138: ## =====================================================
1.4       takayama  139: b<-hgm.pwishart(m=4,n=10,beta=c(1,2,3,4),q0=1,q=10,approxdeg=20,mode=c(1,1,(16+1)*100));
1.3       takayama  140: c<-matrix(b,ncol=16+1,byrow=1);
                    141: #plot(c)
1.12      takayama  142: ## =====================================================
                    143: ## Example 3.
                    144: ## =====================================================
                    145: c<-hgm.pwishart(m=4,n=10,beta=c(1,2,3,4),q0=1,q=10,approxdeg=20,autoplot=1);
                    146: #plot(c)
1.1       takayama  147: }
                    148: % Add one or more standard keywords, see file 'KEYWORDS' in the
                    149: % R documentation directory.
                    150: \keyword{ Cumulative distribution function of random wishart matrix }
                    151: \keyword{ Holonomic gradient method }
                    152: \keyword{ HGM }
                    153:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>