Annotation of OpenXM/src/R/r-packages/hgm/man/hgm.cwishart.Rd, Revision 1.2
1.2 ! takayama 1: % $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm.cwishart.Rd,v 1.1 2013/02/23 07:00:21 takayama Exp $
1.1 takayama 2: \name{hgm.cwishart}
3: \alias{hgm.cwishart}
4: %- Also NEED an '\alias' for EACH other topic documented here.
5: \title{
6: The function hgm.cwishart evaluates the cumulative distribution function
7: of random wishart matrix.
8: }
9: \description{
10: The function hgm.cwishart evaluates the cumulative distribution function
11: of random wishart matrix of size m times m.
12: }
13: \usage{
14: hgm.cwishart(m,n,beta,x0,approxdeg,h,dp,x)
15: }
16: %- maybe also 'usage' for other objects documented here.
17: \arguments{
1.2 ! takayama 18: \item{m}{The dimension of the Wishart matrix.}
! 19: \item{n}{The degree of freedome (a parameter of the Wishart distribution)}
! 20: \item{beta}{The eigenvalues of the inverse of the covariant matrix
! 21: (a parameter of the Wishart distribution)
1.1 takayama 22: }
1.2 ! takayama 23: \item{x0}{The point to evaluate the matrix hypergeometric series. x0>0}
1.1 takayama 24: \item{approxdeg}{
1.2 ! takayama 25: Zonal polynomials upto the approxdeg are calculated to evaluate
! 26: values near the origin. A zonal polynomial is determined by a given
! 27: partition (k1,...,km). We call the sum k1+...+km the degree.
1.1 takayama 28: }
29: \item{h}{
1.2 ! takayama 30: A (small) step size for the Runge-Kutta method. h>0.
1.1 takayama 31: }
32: \item{dp}{
1.2 ! takayama 33: Sampling interval of solutions by the Runge-Kutta method.
! 34: }
! 35: \item{x}{
! 36: The first value of this function is the Prob(L1 < x)
! 37: where L1 is the first eigenvalue of the Wishart matrix.
1.1 takayama 38: }
39: }
40: \details{
1.2 ! takayama 41: It is evaluated by the Koev-Edelman algorithm when x is near the origin and
! 42: by the HGM when x is far from the origin.
! 43: We can obtain more accurate result when the variables h, x0 are smaller
! 44: and the approxdeg is more larger.
1.1 takayama 45: % \code{\link[RCurl]{postForm}}.
46: }
47: \value{
1.2 ! takayama 48: The output is x, y[0], ..., y[2^m],
! 49: y[0] is the value of the cumulative distribution
! 50: function P(L1 < x) at x. y[1],...,y[2^m] are some derivatives.
! 51: See the reference below.
1.1 takayama 52: }
53: \references{
1.2 ! takayama 54: H.Hashiguchi, Y.Numata, N.Takayama, A.Takemura,
! 55: Holonomic gradient method for the distribution function of the largest root of a Wishart matrix
! 56: \url{http://arxiv.org/abs/1201.0472},
1.1 takayama 57: }
58: \author{
59: Nobuki Takayama
60: }
61: \note{
62: %% ~~further notes~~
63: }
64:
65: %% ~Make other sections like Warning with \section{Warning }{....} ~
66:
67: \seealso{
68: %%\code{\link{oxm.matrix_r2tfb}}
69: }
70: \examples{
71: ## =====================================================
72: ## Example 1. Computing normalization constant of the Fisher distribution on SO(3)
73: ## =====================================================
74: hgm.cwishart(m=3,n=5,beta=c(1,2,3),x=10)
75:
76: }
77: % Add one or more standard keywords, see file 'KEYWORDS' in the
78: % R documentation directory.
79: \keyword{ Cumulative distribution function of random wishart matrix }
80: \keyword{ Holonomic gradient method }
81: \keyword{ HGM }
82:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>