Annotation of OpenXM/src/R/r-packages/hgm/man/hgm.cwishart.Rd, Revision 1.5
1.5 ! takayama 1: % $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm.cwishart.Rd,v 1.4 2013/03/26 05:53:57 takayama Exp $
1.4 takayama 2: \name{hgm.pwishart}
3: \alias{hgm.pwishart}
1.1 takayama 4: %- Also NEED an '\alias' for EACH other topic documented here.
5: \title{
1.4 takayama 6: The function hgm.pwishart evaluates the cumulative distribution function
1.1 takayama 7: of random wishart matrix.
8: }
9: \description{
1.4 takayama 10: The function hgm.pwishart evaluates the cumulative distribution function
1.1 takayama 11: of random wishart matrix of size m times m.
12: }
13: \usage{
1.4 takayama 14: hgm.pwishart(m,n,beta,q0,approxdeg,h,dp,q,mode,method,err)
1.1 takayama 15: }
16: %- maybe also 'usage' for other objects documented here.
17: \arguments{
1.2 takayama 18: \item{m}{The dimension of the Wishart matrix.}
19: \item{n}{The degree of freedome (a parameter of the Wishart distribution)}
1.3 takayama 20: \item{beta}{The eigenvalues of the inverse of the covariant matrix /2
21: (a parameter of the Wishart distribution).
22: The beta is equal to inverse(sigma)/2.
1.1 takayama 23: }
1.4 takayama 24: \item{q0}{The point to evaluate the matrix hypergeometric series. q0>0}
1.1 takayama 25: \item{approxdeg}{
1.2 takayama 26: Zonal polynomials upto the approxdeg are calculated to evaluate
27: values near the origin. A zonal polynomial is determined by a given
28: partition (k1,...,km). We call the sum k1+...+km the degree.
1.1 takayama 29: }
30: \item{h}{
1.2 takayama 31: A (small) step size for the Runge-Kutta method. h>0.
1.1 takayama 32: }
33: \item{dp}{
1.2 takayama 34: Sampling interval of solutions by the Runge-Kutta method.
35: }
1.4 takayama 36: \item{q}{
37: The second value y[0] of this function is the Prob(L1 < q)
1.2 takayama 38: where L1 is the first eigenvalue of the Wishart matrix.
1.1 takayama 39: }
1.3 takayama 40: \item{mode}{
41: When mode=c(1,0,0), it returns the evaluation
42: of the matrix hypergeometric series and its derivatives at x0.
43: When mode=c(1,1,(m^2+1)*p), intermediate values of P(L1 < x) with respect to
44: p-steps of x are also returned. Sampling interval is controled by dp.
45: }
46: \item{method}{
1.5 ! takayama 47: a-rk4 is the default value.
1.3 takayama 48: When method="a-rk4", the adaptive Runge-Kutta method is used.
49: Steps are automatically adjusted by err.
50: }
51: \item{err}{
52: When err=c(e1,e2), e1 is the absolute error and e2 is the relative error.
53: As long as NaN is not returned, it is recommended to set to
54: err=c(0.0, 1e-10), because initial values are usually very small.
55: }
1.5 ! takayama 56: \item{automatic}{
! 57: automatic=1 is the default value.
! 58: If it is 1, the degree of the series approximation will be increased until
! 59: |(F(i)-F(i-1))/F(i-1)| < assigned_series_error where
! 60: F(i) is the degree i approximation of the hypergeometric series
! 61: with matrix argument.
! 62: }
! 63: \item{assigned_series_error}{
! 64: assigned_series_error=0.00001 is the default value.
! 65: }
! 66: \item{verbose}{
! 67: verbose=0 is the default value.
! 68: If it is 1, then steps of automatic degree updates and several parameters
! 69: are output to stdout and stderr.
! 70: }
1.1 takayama 71: }
72: \details{
1.2 takayama 73: It is evaluated by the Koev-Edelman algorithm when x is near the origin and
74: by the HGM when x is far from the origin.
1.3 takayama 75: We can obtain more accurate result when the variables h is smaller,
76: x0 is relevant value (not very big, not very small),
1.2 takayama 77: and the approxdeg is more larger.
1.3 takayama 78: A heuristic method to set parameters x0, h, approxdeg properly
79: is to make x larger and to check if the y[0] approaches to 1.
1.1 takayama 80: % \code{\link[RCurl]{postForm}}.
81: }
82: \value{
1.3 takayama 83: The output is x, y[0], ..., y[2^m] in the default mode,
1.2 takayama 84: y[0] is the value of the cumulative distribution
85: function P(L1 < x) at x. y[1],...,y[2^m] are some derivatives.
86: See the reference below.
1.1 takayama 87: }
88: \references{
1.2 takayama 89: H.Hashiguchi, Y.Numata, N.Takayama, A.Takemura,
90: Holonomic gradient method for the distribution function of the largest root of a Wishart matrix
91: \url{http://arxiv.org/abs/1201.0472},
1.1 takayama 92: }
93: \author{
94: Nobuki Takayama
95: }
96: \note{
97: %% ~~further notes~~
98: }
99:
100: %% ~Make other sections like Warning with \section{Warning }{....} ~
101:
102: \seealso{
103: %%\code{\link{oxm.matrix_r2tfb}}
104: }
105: \examples{
106: ## =====================================================
1.3 takayama 107: ## Example 1.
1.1 takayama 108: ## =====================================================
1.4 takayama 109: hgm.pwishart(m=3,n=5,beta=c(1,2,3),q=10)
1.3 takayama 110: ## =====================================================
111: ## Example 2.
112: ## =====================================================
1.4 takayama 113: b<-hgm.pwishart(m=4,n=10,beta=c(1,2,3,4),q0=1,q=10,approxdeg=20,mode=c(1,1,(16+1)*100));
1.3 takayama 114: c<-matrix(b,ncol=16+1,byrow=1);
115: #plot(c)
1.1 takayama 116: }
117: % Add one or more standard keywords, see file 'KEYWORDS' in the
118: % R documentation directory.
119: \keyword{ Cumulative distribution function of random wishart matrix }
120: \keyword{ Holonomic gradient method }
121: \keyword{ HGM }
122:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>