Annotation of OpenXM/src/R/r-packages/hgm/man/hgm.cwishart.Rd, Revision 1.8
1.8 ! takayama 1: % $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm.cwishart.Rd,v 1.7 2015/03/21 22:49:34 takayama Exp $
1.4 takayama 2: \name{hgm.pwishart}
3: \alias{hgm.pwishart}
1.1 takayama 4: %- Also NEED an '\alias' for EACH other topic documented here.
5: \title{
1.4 takayama 6: The function hgm.pwishart evaluates the cumulative distribution function
1.7 takayama 7: of random wishart matrices.
1.1 takayama 8: }
9: \description{
1.4 takayama 10: The function hgm.pwishart evaluates the cumulative distribution function
1.7 takayama 11: of random wishart matrices of size m times m.
1.1 takayama 12: }
13: \usage{
1.8 ! takayama 14: hgm.pwishart(m,n,beta,q0,approxdeg,h,dp,q,mode,method,err,automatic,assigned_series_error,verbose)
1.1 takayama 15: }
16: %- maybe also 'usage' for other objects documented here.
17: \arguments{
1.2 takayama 18: \item{m}{The dimension of the Wishart matrix.}
19: \item{n}{The degree of freedome (a parameter of the Wishart distribution)}
1.3 takayama 20: \item{beta}{The eigenvalues of the inverse of the covariant matrix /2
21: (a parameter of the Wishart distribution).
22: The beta is equal to inverse(sigma)/2.
1.1 takayama 23: }
1.4 takayama 24: \item{q0}{The point to evaluate the matrix hypergeometric series. q0>0}
1.1 takayama 25: \item{approxdeg}{
1.2 takayama 26: Zonal polynomials upto the approxdeg are calculated to evaluate
27: values near the origin. A zonal polynomial is determined by a given
28: partition (k1,...,km). We call the sum k1+...+km the degree.
1.1 takayama 29: }
30: \item{h}{
1.2 takayama 31: A (small) step size for the Runge-Kutta method. h>0.
1.1 takayama 32: }
33: \item{dp}{
1.2 takayama 34: Sampling interval of solutions by the Runge-Kutta method.
35: }
1.4 takayama 36: \item{q}{
37: The second value y[0] of this function is the Prob(L1 < q)
1.2 takayama 38: where L1 is the first eigenvalue of the Wishart matrix.
1.1 takayama 39: }
1.3 takayama 40: \item{mode}{
41: When mode=c(1,0,0), it returns the evaluation
42: of the matrix hypergeometric series and its derivatives at x0.
43: When mode=c(1,1,(m^2+1)*p), intermediate values of P(L1 < x) with respect to
44: p-steps of x are also returned. Sampling interval is controled by dp.
45: }
46: \item{method}{
1.5 takayama 47: a-rk4 is the default value.
1.3 takayama 48: When method="a-rk4", the adaptive Runge-Kutta method is used.
49: Steps are automatically adjusted by err.
50: }
51: \item{err}{
52: When err=c(e1,e2), e1 is the absolute error and e2 is the relative error.
53: As long as NaN is not returned, it is recommended to set to
54: err=c(0.0, 1e-10), because initial values are usually very small.
55: }
1.5 takayama 56: \item{automatic}{
57: automatic=1 is the default value.
58: If it is 1, the degree of the series approximation will be increased until
59: |(F(i)-F(i-1))/F(i-1)| < assigned_series_error where
60: F(i) is the degree i approximation of the hypergeometric series
61: with matrix argument.
1.6 takayama 62: Step sizes for the Runge-Kutta method are also set automatically from
63: the assigned_series_error if it is 1.
1.5 takayama 64: }
65: \item{assigned_series_error}{
66: assigned_series_error=0.00001 is the default value.
67: }
68: \item{verbose}{
69: verbose=0 is the default value.
70: If it is 1, then steps of automatic degree updates and several parameters
71: are output to stdout and stderr.
72: }
1.1 takayama 73: }
74: \details{
1.2 takayama 75: It is evaluated by the Koev-Edelman algorithm when x is near the origin and
76: by the HGM when x is far from the origin.
1.3 takayama 77: We can obtain more accurate result when the variables h is smaller,
78: x0 is relevant value (not very big, not very small),
1.2 takayama 79: and the approxdeg is more larger.
1.3 takayama 80: A heuristic method to set parameters x0, h, approxdeg properly
81: is to make x larger and to check if the y[0] approaches to 1.
1.1 takayama 82: % \code{\link[RCurl]{postForm}}.
83: }
84: \value{
1.3 takayama 85: The output is x, y[0], ..., y[2^m] in the default mode,
1.2 takayama 86: y[0] is the value of the cumulative distribution
87: function P(L1 < x) at x. y[1],...,y[2^m] are some derivatives.
88: See the reference below.
1.1 takayama 89: }
90: \references{
1.2 takayama 91: H.Hashiguchi, Y.Numata, N.Takayama, A.Takemura,
1.6 takayama 92: Holonomic gradient method for the distribution function of the largest root of a Wishart matrix,
93: Journal of Multivariate Analysis, 117, (2013) 296-312,
94: \url{http://dx.doi.org/10.1016/j.jmva.2013.03.011},
1.1 takayama 95: }
96: \author{
97: Nobuki Takayama
98: }
99: \note{
1.7 takayama 100: This function does not work well under the following cases:
101: 1. The beta (the set of eigenvalues)
102: is degenerated or is almost degenerated.
103: 2. The beta is very skew, in other words, there is a big eigenvalue
104: and there is also a small eigenvalue.
105: The error control is done by a heuristic method.
106: The obtained value is not validated automatically.
1.1 takayama 107: }
108:
109: %% ~Make other sections like Warning with \section{Warning }{....} ~
110:
111: \seealso{
112: %%\code{\link{oxm.matrix_r2tfb}}
113: }
114: \examples{
115: ## =====================================================
1.3 takayama 116: ## Example 1.
1.1 takayama 117: ## =====================================================
1.4 takayama 118: hgm.pwishart(m=3,n=5,beta=c(1,2,3),q=10)
1.3 takayama 119: ## =====================================================
120: ## Example 2.
121: ## =====================================================
1.4 takayama 122: b<-hgm.pwishart(m=4,n=10,beta=c(1,2,3,4),q0=1,q=10,approxdeg=20,mode=c(1,1,(16+1)*100));
1.3 takayama 123: c<-matrix(b,ncol=16+1,byrow=1);
124: #plot(c)
1.1 takayama 125: }
126: % Add one or more standard keywords, see file 'KEYWORDS' in the
127: % R documentation directory.
128: \keyword{ Cumulative distribution function of random wishart matrix }
129: \keyword{ Holonomic gradient method }
130: \keyword{ HGM }
131:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>