Annotation of OpenXM/src/R/r-packages/hgm/man/hgm.se.hgm.Bingham.Rd, Revision 1.1
1.1 ! sei 1: \name{hgm.se.hgm.Bingham}
! 2: \alias{hgm.se.hgm.Bingham}
! 3: %- Also NEED an '\alias' for EACH other topic documented here.
! 4: \title{
! 5: The function hgm.se.hgm.Bingham performs the holonomic gradient method (HGM)
! 6: for Bingham distributions.
! 7: }
! 8: \description{
! 9: The function hgm.se.hgm.Bingham performs the holonomic gradient method (HGM)
! 10: for Bingham distributions with the deSolve package in R.
! 11: }
! 12: \usage{
! 13: hgm.se.hgm.Bingham(th, d=rep(1,length(th)+1), logarithm=FALSE, ini.method="power", times=NULL, withvol=FALSE, ...)
! 14: }
! 15: %- maybe also 'usage' for other objects documented here.
! 16: \arguments{
! 17: \item{th}{ A (p-1)-dimensional vector which specifies the first (p-1) components of the parameter vector of the Bingham distribution on the (p-1)-dim sphere. The p-th parameter is assumed to be zero.}
! 18: \item{d}{
! 19: A p-dimensional vector which specifies the multiplicity of the parameter. The default is all-one vector.
! 20: }
! 21: \item{logarithm}{
! 22: If 'logarithm' is TRUE, then the result is log of the normalizing constant.
! 23: }
! 24: \item{ini.method}{
! 25: The method for computing the initial value. Only "power" is implemented now.
! 26: }
! 27: \item{times}{
! 28: a vector; times in [0,1] at which explicit estimates for G are desired.
! 29: If time = NULL, the set {0,1} is used, and only the final value is returned.
! 30: }
! 31: \item{withvol}{
! 32: If 'withvol' is TRUE, then the normalizing constant with volume of sphere is returned.
! 33: Otherwise that without volume is returned.
! 34: Therefore, if 'withvol' is FALSE and the parameter is zero, then the normalizing constant becomes 1.
! 35: }
! 36: \item{...}{
! 37: Additional parameters for computing initial values. Details are omitted.
! 38: }
! 39: }
! 40: \details{
! 41: The function hgm.se.hgm.Bingham computes the normalizing constant
! 42: of the Bingham distribution and its derivatives at any specified point.
! 43: The initial value is computed by the power series expansion.
! 44: % \code{\link[RCurl]{postForm}}.
! 45: }
! 46: \value{
! 47: The output is p-dimensional vector G.
! 48: The first element of G is the normalizing constant
! 49: and the following (p-1)-elements are partial derivative
! 50: of the normalizing constant with respect to the first
! 51: (p-1) components of the parameter 'th'.
! 52: }
! 53: \references{
! 54: \url{http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html}
! 55: }
! 56: \author{
! 57: Tomonari Sei
! 58: }
! 59: \note{
! 60: %% ~~further notes~~
! 61: }
! 62:
! 63: %% ~Make other sections like Warning with \section{Warning }{....} ~
! 64:
! 65: \seealso{
! 66: %%\code{\link{oxm.matrix_r2tfb}}
! 67: }
! 68: \examples{
! 69: # Example 1.
! 70: library(deSolve)
! 71: hgm.se.hgm.Bingham(c(1,3,5))
! 72: }
! 73: % Add one or more standard keywords, see file 'KEYWORDS' in the
! 74: % R documentation directory.
! 75: \keyword{ Normalization constant }
! 76: \keyword{ Holonomic gradient method }
! 77: \keyword{ HGM }
! 78:
! 79:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>