Annotation of OpenXM/src/R/r-packages/hgm/man/hgm.se.hgm.Bingham.Rd, Revision 1.2
1.2 ! takayama 1: \name{hgm.ncBingham}
! 2: %\alias{hgm.se.hgm.Bingham}
1.1 sei 3: %- Also NEED an '\alias' for EACH other topic documented here.
4: \title{
1.2 ! takayama 5: The function hgm.ncBingham performs the holonomic gradient method (HGM)
1.1 sei 6: for Bingham distributions.
7: }
8: \description{
1.2 ! takayama 9: The function hgm.ncBingham performs the holonomic gradient method (HGM)
1.1 sei 10: for Bingham distributions with the deSolve package in R.
11: }
12: \usage{
1.2 ! takayama 13: hgm.ncBingham(th, d=rep(1,length(th)+1), logarithm=FALSE, ini.method="power", times=NULL, withvol=FALSE, ...)
1.1 sei 14: }
15: %- maybe also 'usage' for other objects documented here.
16: \arguments{
17: \item{th}{ A (p-1)-dimensional vector which specifies the first (p-1) components of the parameter vector of the Bingham distribution on the (p-1)-dim sphere. The p-th parameter is assumed to be zero.}
18: \item{d}{
19: A p-dimensional vector which specifies the multiplicity of the parameter. The default is all-one vector.
20: }
21: \item{logarithm}{
22: If 'logarithm' is TRUE, then the result is log of the normalizing constant.
23: }
24: \item{ini.method}{
25: The method for computing the initial value. Only "power" is implemented now.
26: }
27: \item{times}{
28: a vector; times in [0,1] at which explicit estimates for G are desired.
29: If time = NULL, the set {0,1} is used, and only the final value is returned.
30: }
31: \item{withvol}{
32: If 'withvol' is TRUE, then the normalizing constant with volume of sphere is returned.
33: Otherwise that without volume is returned.
34: Therefore, if 'withvol' is FALSE and the parameter is zero, then the normalizing constant becomes 1.
35: }
36: \item{...}{
37: Additional parameters for computing initial values. Details are omitted.
38: }
39: }
40: \details{
1.2 ! takayama 41: The function hgm.ncBingham computes the normalizing constant
1.1 sei 42: of the Bingham distribution and its derivatives at any specified point.
43: The initial value is computed by the power series expansion.
44: % \code{\link[RCurl]{postForm}}.
45: }
46: \value{
47: The output is p-dimensional vector G.
48: The first element of G is the normalizing constant
49: and the following (p-1)-elements are partial derivative
50: of the normalizing constant with respect to the first
51: (p-1) components of the parameter 'th'.
52: }
53: \references{
54: \url{http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html}
55: }
56: \author{
57: Tomonari Sei
58: }
59: \note{
60: %% ~~further notes~~
61: }
62:
63: %% ~Make other sections like Warning with \section{Warning }{....} ~
64:
65: \seealso{
66: %%\code{\link{oxm.matrix_r2tfb}}
67: }
68: \examples{
69: # Example 1.
1.2 ! takayama 70: hgm.ncBingham(c(1,3,5))
1.1 sei 71: }
72: % Add one or more standard keywords, see file 'KEYWORDS' in the
73: % R documentation directory.
74: \keyword{ Normalization constant }
75: \keyword{ Holonomic gradient method }
76: \keyword{ HGM }
77:
78:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>