Annotation of OpenXM/src/R/r-packages/hgm/man/hgm.se.hgm.Bingham.Rd, Revision 1.3
1.3 ! takayama 1: % $OpenXM$
1.2 takayama 2: \name{hgm.ncBingham}
3: %\alias{hgm.se.hgm.Bingham}
1.1 sei 4: %- Also NEED an '\alias' for EACH other topic documented here.
5: \title{
1.2 takayama 6: The function hgm.ncBingham performs the holonomic gradient method (HGM)
1.1 sei 7: for Bingham distributions.
8: }
9: \description{
1.2 takayama 10: The function hgm.ncBingham performs the holonomic gradient method (HGM)
1.1 sei 11: for Bingham distributions with the deSolve package in R.
12: }
13: \usage{
1.2 takayama 14: hgm.ncBingham(th, d=rep(1,length(th)+1), logarithm=FALSE, ini.method="power", times=NULL, withvol=FALSE, ...)
1.1 sei 15: }
16: %- maybe also 'usage' for other objects documented here.
17: \arguments{
18: \item{th}{ A (p-1)-dimensional vector which specifies the first (p-1) components of the parameter vector of the Bingham distribution on the (p-1)-dim sphere. The p-th parameter is assumed to be zero.}
19: \item{d}{
20: A p-dimensional vector which specifies the multiplicity of the parameter. The default is all-one vector.
21: }
22: \item{logarithm}{
23: If 'logarithm' is TRUE, then the result is log of the normalizing constant.
24: }
25: \item{ini.method}{
26: The method for computing the initial value. Only "power" is implemented now.
27: }
28: \item{times}{
29: a vector; times in [0,1] at which explicit estimates for G are desired.
30: If time = NULL, the set {0,1} is used, and only the final value is returned.
31: }
32: \item{withvol}{
33: If 'withvol' is TRUE, then the normalizing constant with volume of sphere is returned.
34: Otherwise that without volume is returned.
35: Therefore, if 'withvol' is FALSE and the parameter is zero, then the normalizing constant becomes 1.
36: }
37: \item{...}{
38: Additional parameters for computing initial values. Details are omitted.
39: }
40: }
41: \details{
1.2 takayama 42: The function hgm.ncBingham computes the normalizing constant
1.1 sei 43: of the Bingham distribution and its derivatives at any specified point.
44: The initial value is computed by the power series expansion.
45: % \code{\link[RCurl]{postForm}}.
46: }
47: \value{
48: The output is p-dimensional vector G.
49: The first element of G is the normalizing constant
50: and the following (p-1)-elements are partial derivative
51: of the normalizing constant with respect to the first
52: (p-1) components of the parameter 'th'.
53: }
54: \references{
55: \url{http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html}
56: }
57: \author{
58: Tomonari Sei
59: }
60: \note{
61: %% ~~further notes~~
62: }
63:
64: %% ~Make other sections like Warning with \section{Warning }{....} ~
65:
66: \seealso{
67: %%\code{\link{oxm.matrix_r2tfb}}
68: }
69: \examples{
70: # Example 1.
1.2 takayama 71: hgm.ncBingham(c(1,3,5))
1.1 sei 72: }
73: % Add one or more standard keywords, see file 'KEYWORDS' in the
74: % R documentation directory.
75: \keyword{ Normalization constant }
76: \keyword{ Holonomic gradient method }
77: \keyword{ HGM }
78:
79:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>