Annotation of OpenXM/src/R/r-packages/hgm/man/hgm.se.hgm.Bingham.Rd, Revision 1.4
1.4 ! takayama 1: % $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm.se.hgm.Bingham.Rd,v 1.3 2014/03/31 00:50:34 takayama Exp $
1.2 takayama 2: \name{hgm.ncBingham}
1.4 ! takayama 3: \alias{hgm.ncBingham}
1.2 takayama 4: %\alias{hgm.se.hgm.Bingham}
1.1 sei 5: %- Also NEED an '\alias' for EACH other topic documented here.
6: \title{
1.2 takayama 7: The function hgm.ncBingham performs the holonomic gradient method (HGM)
1.1 sei 8: for Bingham distributions.
9: }
10: \description{
1.2 takayama 11: The function hgm.ncBingham performs the holonomic gradient method (HGM)
1.1 sei 12: for Bingham distributions with the deSolve package in R.
13: }
14: \usage{
1.2 takayama 15: hgm.ncBingham(th, d=rep(1,length(th)+1), logarithm=FALSE, ini.method="power", times=NULL, withvol=FALSE, ...)
1.1 sei 16: }
17: %- maybe also 'usage' for other objects documented here.
18: \arguments{
19: \item{th}{ A (p-1)-dimensional vector which specifies the first (p-1) components of the parameter vector of the Bingham distribution on the (p-1)-dim sphere. The p-th parameter is assumed to be zero.}
20: \item{d}{
21: A p-dimensional vector which specifies the multiplicity of the parameter. The default is all-one vector.
22: }
23: \item{logarithm}{
24: If 'logarithm' is TRUE, then the result is log of the normalizing constant.
25: }
26: \item{ini.method}{
27: The method for computing the initial value. Only "power" is implemented now.
28: }
29: \item{times}{
30: a vector; times in [0,1] at which explicit estimates for G are desired.
31: If time = NULL, the set {0,1} is used, and only the final value is returned.
32: }
33: \item{withvol}{
34: If 'withvol' is TRUE, then the normalizing constant with volume of sphere is returned.
35: Otherwise that without volume is returned.
36: Therefore, if 'withvol' is FALSE and the parameter is zero, then the normalizing constant becomes 1.
37: }
38: \item{...}{
39: Additional parameters for computing initial values. Details are omitted.
40: }
41: }
42: \details{
1.2 takayama 43: The function hgm.ncBingham computes the normalizing constant
1.1 sei 44: of the Bingham distribution and its derivatives at any specified point.
45: The initial value is computed by the power series expansion.
46: % \code{\link[RCurl]{postForm}}.
47: }
48: \value{
49: The output is p-dimensional vector G.
50: The first element of G is the normalizing constant
51: and the following (p-1)-elements are partial derivative
52: of the normalizing constant with respect to the first
53: (p-1) components of the parameter 'th'.
54: }
55: \references{
56: \url{http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html}
57: }
58: \author{
59: Tomonari Sei
60: }
61: \note{
62: %% ~~further notes~~
63: }
64:
65: %% ~Make other sections like Warning with \section{Warning }{....} ~
66:
67: \seealso{
68: %%\code{\link{oxm.matrix_r2tfb}}
69: }
70: \examples{
71: # Example 1.
1.2 takayama 72: hgm.ncBingham(c(1,3,5))
1.1 sei 73: }
74: % Add one or more standard keywords, see file 'KEYWORDS' in the
75: % R documentation directory.
76: \keyword{ Normalization constant }
77: \keyword{ Holonomic gradient method }
78: \keyword{ HGM }
79:
80:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>