Annotation of OpenXM/src/R/r-packages/hgm/man/hgm.se.hgm.Bingham.Rd, Revision 1.5
1.5 ! takayama 1: % $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm.se.hgm.Bingham.Rd,v 1.4 2015/03/22 00:27:51 takayama Exp $
1.2 takayama 2: \name{hgm.ncBingham}
1.4 takayama 3: \alias{hgm.ncBingham}
1.2 takayama 4: %\alias{hgm.se.hgm.Bingham}
1.1 sei 5: %- Also NEED an '\alias' for EACH other topic documented here.
6: \title{
1.2 takayama 7: The function hgm.ncBingham performs the holonomic gradient method (HGM)
1.1 sei 8: for Bingham distributions.
9: }
10: \description{
1.2 takayama 11: The function hgm.ncBingham performs the holonomic gradient method (HGM)
1.1 sei 12: for Bingham distributions with the deSolve package in R.
13: }
14: \usage{
1.5 ! takayama 15: hgm.ncBingham(th, d=rep(1,length(th)+1), logarithm=FALSE,
! 16: ini.method="power", times=NULL, withvol=FALSE, ...)
1.1 sei 17: }
18: %- maybe also 'usage' for other objects documented here.
19: \arguments{
20: \item{th}{ A (p-1)-dimensional vector which specifies the first (p-1) components of the parameter vector of the Bingham distribution on the (p-1)-dim sphere. The p-th parameter is assumed to be zero.}
21: \item{d}{
22: A p-dimensional vector which specifies the multiplicity of the parameter. The default is all-one vector.
23: }
24: \item{logarithm}{
25: If 'logarithm' is TRUE, then the result is log of the normalizing constant.
26: }
27: \item{ini.method}{
28: The method for computing the initial value. Only "power" is implemented now.
29: }
30: \item{times}{
31: a vector; times in [0,1] at which explicit estimates for G are desired.
32: If time = NULL, the set {0,1} is used, and only the final value is returned.
33: }
34: \item{withvol}{
35: If 'withvol' is TRUE, then the normalizing constant with volume of sphere is returned.
36: Otherwise that without volume is returned.
37: Therefore, if 'withvol' is FALSE and the parameter is zero, then the normalizing constant becomes 1.
38: }
39: \item{...}{
40: Additional parameters for computing initial values. Details are omitted.
41: }
42: }
43: \details{
1.2 takayama 44: The function hgm.ncBingham computes the normalizing constant
1.1 sei 45: of the Bingham distribution and its derivatives at any specified point.
46: The initial value is computed by the power series expansion.
47: % \code{\link[RCurl]{postForm}}.
48: }
49: \value{
50: The output is p-dimensional vector G.
51: The first element of G is the normalizing constant
52: and the following (p-1)-elements are partial derivative
53: of the normalizing constant with respect to the first
54: (p-1) components of the parameter 'th'.
55: }
56: \references{
57: \url{http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html}
58: }
59: \author{
60: Tomonari Sei
61: }
62: \note{
63: %% ~~further notes~~
64: }
65:
66: %% ~Make other sections like Warning with \section{Warning }{....} ~
67:
68: \seealso{
69: %%\code{\link{oxm.matrix_r2tfb}}
70: }
71: \examples{
72: # Example 1.
1.2 takayama 73: hgm.ncBingham(c(1,3,5))
1.1 sei 74: }
75: % Add one or more standard keywords, see file 'KEYWORDS' in the
76: % R documentation directory.
77: \keyword{ Normalization constant }
78: \keyword{ Holonomic gradient method }
79: \keyword{ HGM }
80:
81:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>