Annotation of OpenXM/src/R/r-packages/hgm/man/hgm.so3nc.Rd, Revision 1.5
1.5 ! takayama 1: % $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm.so3nc.Rd,v 1.4 2014/03/24 05:28:17 takayama Exp $
1.4 takayama 2: \name{hgm.ncso3}
3: \alias{hgm.ncso3}
1.1 takayama 4: %- Also NEED an '\alias' for EACH other topic documented here.
5: \title{
1.4 takayama 6: The function hgm.ncso3 evaluates the normalization constant for the Fisher
1.1 takayama 7: distribution on SO(3).
8: }
9: \description{
1.4 takayama 10: The function hgm.ncso3 evaluates the normalization constant for the Fisher
1.1 takayama 11: distribution on SO(3).
12: }
13: \usage{
1.4 takayama 14: hgm.ncso3(a,b,c,t0=0.0,q=1,deg=0)
1.1 takayama 15: }
16: %- maybe also 'usage' for other objects documented here.
17: \arguments{
1.5 ! takayama 18: \item{a}{See the description of c.}
! 19: \item{b}{See the description of c.}
1.2 takayama 20: \item{c}{
21: This function evaluates the normalization constant for the parameter
22: Theta=diag(theta_{ii}) of the Fisher distribution on SO(3).
23: The variables a,b,c stand for the parameters
24: theta_{11}, theta_{22}, theta_{33} respectively.
25: }
1.1 takayama 26: \item{t0}{
27: It is the initial point to evaluate the series. If it is set to 0.0,
28: a default value is used.
29: }
30: \item{q}{
31: If it is 1, then the program works in a quiet mode.
32: }
33: \item{deg}{
34: It gives the approximation degree of the power series approximation
1.2 takayama 35: of the normalization constant near the origin.
1.1 takayama 36: If it is 0, a default value is used.
37: }
38: }
39: \details{
1.2 takayama 40: The normalization constant c(Theta)
41: of the Fisher distribution on SO(3) is defined by
42: integral( exp(trace( transpose(Theta) X)) )
43: where X is the integration variable and runs over S0(3) and
44: Theta is a 3 x 3 matrix parameter.
45: A general HGM algorithm to evaluate the normalization constant
1.1 takayama 46: is given in the reference below.
1.2 takayama 47: We use the Corollary 1 and the series expansion in 3.2 for the evaluation.
1.1 takayama 48: % \code{\link[RCurl]{postForm}}.
49: }
50: \value{
1.2 takayama 51: The output is c(Theta).
1.1 takayama 52: }
53: \references{
54: Tomonari Sei, Hiroki Shibata, Akimichi Takemura, Katsuyoshi Ohara, Nobuki Takayama,
55: Properties and applications of Fisher distribution on the rotation group,
1.4 takayama 56: Journal of Multivariate Analysis, 116 (2013), 440--455,
57: \url{http://dx.doi.org/10.1016/j.jmva.2013.01.010}
1.1 takayama 58: }
59: \author{
60: Nobuki Takayama
61: }
62: \note{
63: %% ~~further notes~~
64: }
65:
66: %% ~Make other sections like Warning with \section{Warning }{....} ~
67:
68: \seealso{
69: %%\code{\link{oxm.matrix_r2tfb}}
70: }
71: \examples{
72: ## =====================================================
73: ## Example 1. Computing normalization constant of the Fisher distribution on SO(3)
74: ## =====================================================
1.4 takayama 75: hgm.ncso3(1,2,3)
1.2 takayama 76:
77: ## =====================================================
78: ## Example 2. Asteroid data in the paper
79: ## =====================================================
1.4 takayama 80: hgm.ncso3(19.6,0.831,-0.671)
1.1 takayama 81: }
82: % Add one or more standard keywords, see file 'KEYWORDS' in the
83: % R documentation directory.
84: \keyword{ Normalization constant }
85: \keyword{ Holonomic gradient method }
1.2 takayama 86: \keyword{ HGM }
87: \keyword{ Fisher distribution on SO(3)}
1.1 takayama 88:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>