Annotation of OpenXM/src/R/r-packages/hgm/man/hgm.so3nc.Rd, Revision 1.8
1.8 ! takayama 1: % $OpenXM: OpenXM/src/R/r-packages/hgm/man/hgm.so3nc.Rd,v 1.7 2019/11/16 11:03:44 takayama Exp $
1.4 takayama 2: \name{hgm.ncso3}
3: \alias{hgm.ncso3}
1.1 takayama 4: %- Also NEED an '\alias' for EACH other topic documented here.
5: \title{
1.4 takayama 6: The function hgm.ncso3 evaluates the normalization constant for the Fisher
1.1 takayama 7: distribution on SO(3).
8: }
9: \description{
1.4 takayama 10: The function hgm.ncso3 evaluates the normalization constant for the Fisher
1.1 takayama 11: distribution on SO(3).
12: }
13: \usage{
1.7 takayama 14: hgm.ncso3(a,b,c,t0=0.0,q=1,deg=0,log=0)
1.1 takayama 15: }
16: %- maybe also 'usage' for other objects documented here.
17: \arguments{
1.5 takayama 18: \item{a}{See the description of c.}
19: \item{b}{See the description of c.}
1.2 takayama 20: \item{c}{
21: This function evaluates the normalization constant for the parameter
22: Theta=diag(theta_{ii}) of the Fisher distribution on SO(3).
23: The variables a,b,c stand for the parameters
24: theta_{11}, theta_{22}, theta_{33} respectively.
25: }
1.1 takayama 26: \item{t0}{
27: It is the initial point to evaluate the series. If it is set to 0.0,
28: a default value is used.
29: }
30: \item{q}{
31: If it is 1, then the program works in a quiet mode.
32: }
33: \item{deg}{
34: It gives the approximation degree of the power series approximation
1.2 takayama 35: of the normalization constant near the origin.
1.1 takayama 36: If it is 0, a default value is used.
37: }
1.7 takayama 38: \item{log}{
39: If it is 1, then the function returns the log of the normalizing constant.
40: }
1.1 takayama 41: }
42: \details{
1.2 takayama 43: The normalization constant c(Theta)
44: of the Fisher distribution on SO(3) is defined by
45: integral( exp(trace( transpose(Theta) X)) )
46: where X is the integration variable and runs over S0(3) and
47: Theta is a 3 x 3 matrix parameter.
48: A general HGM algorithm to evaluate the normalization constant
1.1 takayama 49: is given in the reference below.
1.2 takayama 50: We use the Corollary 1 and the series expansion in 3.2 for the evaluation.
1.1 takayama 51: % \code{\link[RCurl]{postForm}}.
52: }
53: \value{
1.7 takayama 54: The output is an array of c(Theta) and its derivatives with respect to Theta_{11},Theta_{22},Theta_{33}. It is the vector C of the reference below. When log=1, the output is an array of log of them.
1.1 takayama 55: }
56: \references{
57: Tomonari Sei, Hiroki Shibata, Akimichi Takemura, Katsuyoshi Ohara, Nobuki Takayama,
58: Properties and applications of Fisher distribution on the rotation group,
1.4 takayama 59: Journal of Multivariate Analysis, 116 (2013), 440--455,
1.8 ! takayama 60: \doi{10.1016/j.jmva.2013.01.010}
1.1 takayama 61: }
62: \author{
63: Nobuki Takayama
64: }
1.6 takayama 65: %\note{
66: %%% ~~further notes~~
67: %}
1.1 takayama 68:
69: %% ~Make other sections like Warning with \section{Warning }{....} ~
70:
1.6 takayama 71: %\seealso{
72: %%%\code{\link{oxm.matrix_r2tfb}}
73: %}
1.1 takayama 74: \examples{
75: ## =====================================================
76: ## Example 1. Computing normalization constant of the Fisher distribution on SO(3)
77: ## =====================================================
1.7 takayama 78: hgm.ncso3(1,2,3)[1]
1.2 takayama 79:
80: ## =====================================================
81: ## Example 2. Asteroid data in the paper
82: ## =====================================================
1.7 takayama 83: hgm.ncso3(19.6,0.831,-0.671)[1]
1.1 takayama 84: }
85: % Add one or more standard keywords, see file 'KEYWORDS' in the
86: % R documentation directory.
87: \keyword{ Normalization constant }
88: \keyword{ Holonomic gradient method }
1.2 takayama 89: \keyword{ HGM }
90: \keyword{ Fisher distribution on SO(3)}
1.1 takayama 91:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>