Annotation of OpenXM/src/asir-contrib/packages/doc/Diff.texi, Revision 1.1.1.1
1.1 takayama 1: @c $OpenXM: OpenXM/src/asir99/lib/contrib/packages/doc/Diff.texi,v 1.4 1999/11/24 10:24:36 okutani Exp $
2: @node Differential equations,,, $B$=$NB>$NH!?t(B
3: @section Differential equations
4: $B%U%!%$%k(B @file{gr}, @file{Matrix} $B$,I,MW$G$9(B.
5:
6: @tex
7: $B$3$N@a$G>R2p$5$l$k4X?t$G$OHyJ,:nMQAG$O<!$N$h$&$J%j%9%H$GI=8=$7$^$9(B.
8: $$ [ [f_{\alpha},[\alpha_{1},\ldots,\alpha_{n}]],\ldots ] $$
9: $B$3$l$O(B
10: $$ \sum_{\alpha}f_{\alpha}\partial^{\alpha} $$
11: $B$H$$$&0UL#$G$9(B. $B@~7?JPHyJ,J}Dx<07O(B
12: $$ (\sum_{\alpha^{(i)}}f_{\alpha^{(i)}}\partial^{\alpha^{(i)}})\bullet u = 0 \quad (i = 1,\ldots,s) $$
13: $B$J$I$N$h$&$KJ#?t$NHyJ,:nMQAG$rI=8=$9$k$H$-$OHyJ,:nMQAG$N%j%9%H$r;H$$$^$9(B.
14: $$ [ [ [f_{\alpha^{(1)}},[\alpha_{1}^{(1)},\ldots,\alpha_{n}^{(1)}]],\ldots ],\ldots,[ [f_{\alpha^{(s)}},[\alpha_{1}^{(s)},\ldots,\alpha_{n}^{(s)}]],\ldots ] ] $$
15: $BNc$($PHyJ,:nMQAG(B$x dx + y dy + 1$$B$N>l9g$O(B
16: $$ [ [x,[1,0]],[y,[0,1]],[1,[0,0]] ] $$
17: $B$H$J$j$^$9(B. $B$^$?HyJ,:nMQAG$N%j%9%H$G(B$x dx + y dy + 1, dx^2 + dy^2$$B$rI=$9$H(B
18: $$ [ [ [x,[1,0]],[y,[0,1]],[1,[0,0]] ],[ [1,[2,0]],[1,[0,2]] ] ] $$
19: $B$H$J$j$^$9(B.
20: @end tex
21: @menu
22: @c * diff_op_hg1::
23: @c * diff_op_appell1::
24: @c * diff_op_appell2::
25: @c * diff_op_appell3::
26: * diff_op_appell4::
27: @c * diff_op_selberg2::
28: @c * diff_op_gkz::
29: * diff_act::
30: @c * diff_act_hg1::
31: @c * diff_act_appell1::
32: @c * diff_act_appell2::
33: @c * diff_act_appell3::
34: * diff_act_appell4::
35: @c * diff_act_selberg2::
36: @c * diff_act_gkz::
37: * diff_poly_solve::
38: @c * diff_poly_solve_hg1::
39: @c * diff_poly_solve_appell1::
40: @c * diff_poly_solve_appell2::
41: @c * diff_poly_solve_appell3::
42: @c * diff_poly_solve_appell4::
43: @c * diff_poly_solve_selberg2::
44: @c * diff_poly_solve_gkz::
45: @end menu
46:
47: @node diff_op_appell4,,, Differential equations
48: @subsection @code{diff_op_appell4}
49: @findex diff_op_appell4
50: @table @t
51: @item diff_op_appell4(@var{a},@var{b},@var{c1},@var{c2},@var{V})
52: :: appell $B$N(B F_4 $B$rNm2=$9$kHyJ,:nMQAG$r@8@.$7$^$9(B.
53: @end table
54: @table @var
55: @item return
56: $B%j%9%H(B
57: @item a, b, c1, c2
58: $BM-M}<0(B
59: @item V
60: $B%j%9%H(B
61: @end table
62: @itemize @bullet
63: @item @code{diff_op_appell4}$B$NNc(B.
64: @end itemize
65: @example
66: [298] diff_op_appell4(a,b,c1,c2,[x,y]);
67: [ [ [-x^2+x,[2,0]], [-2*y*x,[1,1]], [-y^2,[0,2]],
68: [(-a-b-1)*x+c1,[1,0]], [(-a-b-1)*y,[0,1]], [-b*a,[0,0]] ],
69: [ [-y^2+y,[0,2]], [-2*y*x,[1,1]], [-x^2,[2,0]],
70: [(-a-b-1)*y+c2,[0,1]], [(-a-b-1)*x,[1,0]], [-b*a,[0,0]] ] ]
71: @end example
72:
73: @node diff_act,,, Differential equations
74: @subsection @code{diff_act}
75: @findex diff_act
76: @table @t
77: @item diff_act(@var{L},@var{F},@var{V})
78: :: $BHyJ,:nMQAG(B @var{L} $B$rM-M}<0(B @var{F} $B$K:nMQ$5$;$k(B. @var{V} $B$OJQ?t%j%9%H(B.
79: @end table
80: @table @var
81: @item return
82: $BM-M}<0(B
83: @item L
84: $B%j%9%H(B
85: @item F
86: $BM-M}<0(B
87: @item V
88: $B%j%9%H(B
89: @end table
90: @itemize @bullet
91: @item @code{diff_act}$B$NNc(B
92: @end itemize
93: @example
94: [302] diff_act([[1,[2]]],x^3+x^2+x+1,[x]);
95: 6*x+2
96:
97: [303] diff_act([[1,[1,0]],[1,[0,1]]],x^2+y^2,[x,y]);
98: 2*x+2*y
99: @end example
100:
101: @node diff_act_appell4,,, Differential equations
102: @subsection @code{diff_act_appell4}
103: @findex diff_act_appell4
104: @table @t
105: @item diff_act_appell4(@var{a},@var{b},@var{c1},@var{c2},@var{F},@var{V})
106: :: $BHyJ,:nMQAG(B @code{diff_op_appell4} $B$rM-M}<0(B @var{F} $B$K:nMQ$5$;$k(B.
107: @end table
108: @table @var
109: @item return
110: $B%j%9%H(B
111: @item a, b, c1, c2
112: $BM-M}<0(B
113: @item F
114: $BM-M}<0(B
115: @item V
116: $B%j%9%H(B
117: @end table
118: @itemize @bullet
119: @item @code{diff_act_appell4}$B$NNc(B
120: @end itemize
121: @example
122: [303] diff_act_appell4(1,0,1,1,x^2+y^2,[x,y]);
123: [-6*x^2+4*x-6*y^2,-6*x^2-6*y^2+4*y]
124:
125: [304] diff_act_appell4(0,0,1,1,x^2+y^2,[x,y]);
126: [-4*x^2+4*x-4*y^2,-4*x^2-4*y^2+4*y]
127:
128: [305] diff_act_appell4(-2,-2,-1,-1,x^2+y^2,[x,y]);
129: [0,0]
130: @end example
131:
132: @node diff_poly_solve,,, Differential equations
133: @subsection @code{diff_poly_solve}
134: @findex diff_poly_solve
135: @table @t
136: @item diff_poly_solve(@var{LL},@var{N},@var{V})
137: :: $BM?$($i$l$?@~7?HyJ,J}Dx<07O$N(B @var{N} $B<!0J2<$NB?9`<02r$r5a$a$k(B.
138: @end table
139: @table @var
140: @item return
141: $B%j%9%H(B
142: @item LL
143: $B%j%9%H(B
144: @item N
145: $B@0?t(B
146: @item V
147: $B%j%9%H(B
148: @end table
149: @itemize @bullet
150: @item @code{diff_poly_solve}$B$NNc(B.
151: @end itemize
152: @example
153: [297] diff_poly_solve([[[x,[1,0]],[-1,[0,0]]],[[y,[0,1]],[-1,[0,0]]]],5,[x,y]);
154: [_4*y*x,[_4]]
155:
156: [298] diff_poly_solve([[[x,[1,0]],[-2,[0,0]]],[[y,[0,1]],[-2,[0,0]]]],5,[x,y]);
157: [_33*y^2*x^2,[_33]]
158: @end example
159:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>