[BACK]Return to dsolv.oxweave CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-contrib / packages / doc

Annotation of OpenXM/src/asir-contrib/packages/doc/dsolv.oxweave, Revision 1.2

1.2     ! takayama    1: /* $OpenXM: OpenXM/src/asir-contrib/packages/doc/dsolv.oxweave,v 1.1 2000/02/06 06:39:48 takayama Exp $ */
1.1       takayama    2: /* dsolv.oxweave */
                      3: /*&eg-texi
                      4: @node DSOLV Functions,,, Top
                      5:
                      6: @chapter DSOLV Functions
                      7:
                      8: This section is a collection of functions to solve regular holonomic
                      9: systems in terms of series.
                     10: Algorithms are explained in the book [SST].
                     11: You can load this package by the command
                     12: @code{load("dsolv");}
                     13: This package requires @code{Diff} and @code{dmodule}.
                     14:
                     15: This package uses @code{ox_sm1}, so the variables you can use
                     16: is as same as those you can use in the package @code{sm1}.
                     17:
                     18: @section Functions
                     19:
                     20: */
                     21:
                     22: /*&jp-texi
                     23: @node DSOLV $BH!?t(B,,, Top
                     24:
                     25: @chapter DSOLV $BH!?t(B
                     26:
                     27: $B$3$N@a$O@5B'%[%m%N%_%C%/7O$r5i?t$G2r$/$?$a$N(B
                     28: $BH!?t$r$"$D$a$F$"$k(B.
                     29: $B%"%k%4%j%:%`$K$D$$$F$O(B [SST] $B$K@bL@$,$"$k(B.
                     30: $B$3$N%Q%C%1!<%8$O<!$N%3%^%s%I(B @code{load("dsolv");}
                     31: $B$G%m!<%I$G$-$k(B.
                     32: $B$3$N%Q%C%1!<%8$O(B @code{Diff} $B$*$h$S(B @code{dmodule} $B$r;HMQ$9$k(B.
                     33:
                     34: $B$3$N%Q%C%1!<%8$O(B @code{ox_sm1} $B$rMxMQ$7$F$$$k(B.
                     35: $B$7$?$,$C$F;HMQ$G$-$kJQ?t$O(B @code{sm1} $B%Q%C%1!<%8$HF1MM$NJQ?t$7$+$D$+$($J$$(B.
                     36:
1.2     ! takayama   37: @section $BH!?t0lMw(B
1.1       takayama   38:
                     39: */
                     40:
                     41: /*&eg-texi
                     42: @menu
                     43: * dsolv_dual::
                     44: @end menu
                     45: @node dsolv_dual,,, DSOLV Functions
                     46: @subsection @code{dsolv_dual}
                     47: @findex dsolv_dual
                     48: @table @t
                     49: @item dsolv_dual(@var{f},@var{v})
                     50: ::  Grobner dual of @var{f}.
                     51: @end table
                     52:
                     53: @table @var
                     54: @item return
                     55: List
                     56: @item f, v
                     57: List
                     58: @end table
                     59:
                     60: @itemize @bullet
                     61: @item  It returns the Grobner dual of @var{f} in the ring of polynomials
                     62: with variables @var{v}.
                     63: @item The ideal generated by @var{f} must be primary to the maximal ideal
                     64: generated by @var{v}.
                     65: If it is not primary to the maximal ideal, then this function falls into
                     66: an infinite loop.
                     67: @item This is an implementation of Algorithm 2.3.14 of the book [SST].
                     68: If we replace variables x, y, ... in the output by log(x), log(y), ...,
                     69: then these polynomials in log are solutions of the system of differential
1.2     ! takayama   70: equations @var{f}@code{_(x->x*dx, y->y*dy, ...)}.
1.1       takayama   71: @end itemize
                     72: */
                     73:
                     74: /*&jp-texi
                     75: @menu
                     76: * dsolv_dual::
                     77: @end menu
                     78: @node dsolv_dual,,, DSOLV $BH!?t(B
                     79: @subsection @code{dsolv_dual}
                     80: @findex dsolv_dual
                     81: @table @t
                     82: @item dsolv_dual(@var{f},@var{v})
                     83: ::  @var{f} $B$N%0%l%V%JAPBP(B
                     84: @end table
                     85:
                     86: @table @var
                     87: @item $BLa$jCM(B
                     88: $B%j%9%H(B
                     89: @item f, v
                     90: $B%j%9%H(B
                     91: @end table
                     92:
                     93: @itemize @bullet
                     94: @item  $BJQ?t(B @var{v} $B>e$NB?9`<04D$K$*$$$F(B,
                     95: @var{f}  $B$N%0%l%V%JAPBP$r5a$a$k(B.
                     96: @item @var{f} $B$G@8@.$5$l$k%$%G%"%k$O(B, @var{v} $B$G@8@.$5$l$k6KBg%$%G%"%k$K(B
                     97: $BBP$7$F(B, primary $B$G$J$$$H$$$1$J$$(B.
                     98: primary $B$G$J$$>l9g(B, $B$3$NH!?t$OL58B%k!<%W$K$*$A$$$k(B.
                     99: @item $B$3$NH!?t$OK\(B [SST] $B$N(B Algorithm 2.3.14  $B$N<BAu$G$"$k(B.
                    100: $B=PNOCf$NJQ?t(B x, y, ... $B$r$=$l$>$l(B log(x), log(y), ..., $B$G$*$-$+$($k$H(B,
                    101: $B$3$l$i$N(B log $BB?9`<0$O(B,
1.2     ! takayama  102: @var{f}@code{_(x->x*dx, y->y*dy, ...)}
        !           103: $B$G@8@.$5$l$kHyJ,J}Dx<07O(B
1.1       takayama  104: $B$N2r$H$J$C$F$$$k(B.
                    105: @end itemize
                    106: */
                    107:
                    108: /*&C-texi
                    109:
                    110: @example
                    111:
                    112:
                    113: [435] dsolv_dual([y-x^2,y+x^2],[x,y]);
                    114: [x,1]
                    115: [436] dsolv_act(y*dy-sm1_mul(x*dx,x*dx,[x,y]),log(x),[x,y]);
                    116: 0
                    117: [437] dsolv_act(y*dy+sm1_mul(x*dx,x*dx,[x,y]),log(x),[x,y]);
                    118: 0
                    119:
                    120: [439] primadec([y^2-x^3,x^2*y^2],[x,y]);
                    121: [[[y^2-x^3,y^4,x^2*y^2],[y,x]]]
                    122: [440] dsolv_dual([y^2-x^3,x^2*y^2],[x,y]);
                    123: [x*y^3+1/4*x^4*y, x^2*y, x*y^2+1/12*x^4, y^3+x^3*y,
                    124:  x^2, x*y, y^2+1/3*x^3, x, y, 1]
                    125:
                    126: [441] dsolv_test_dual();
                    127:   Output is  omitted.
                    128:
                    129: @end example
                    130:
                    131: */
                    132:
                    133:
                    134: /*&eg-texi
                    135:
                    136: @menu
                    137: * dsolv_starting_term::
                    138: @end menu
                    139: @node dsolv_starting_term,,, DSOLV Functions
                    140: @subsection @code{dsolv_starting_term}
                    141: @findex dsolv_starting_term
                    142: @table @t
                    143: @item dsolv_starting_term(@var{f},@var{v},@var{w})
                    144: ::  Find the starting term of the solutions of
                    145: the regular holonomic system @var{f}
                    146: to the direction @var{w}.
                    147: @end table
                    148:
                    149: @table @var
                    150: @item return
                    151: List
                    152: @item f, v, w
                    153: List
                    154: @end table
                    155:
                    156: @itemize @bullet
                    157: @item Find the starting term of the solutions of
                    158: the regular holonomic system @var{f}
                    159: to the direction @var{w}.
                    160: @item The return value is of the form
                    161: [[@var{e1}, @var{e2}, ...],
                    162:  [@var{s1}, @var{s2}, ...]]
                    163: where @var{e1} is an exponent vector and @var{s1} is the corresponding
                    164: solution set, and so on.
                    165: @item If you set @code{Dsolv_message_starting_term} to 1,
                    166: then this function outputs messages during the computation.
                    167: @end itemize
                    168:
                    169: */
                    170:
                    171: /*&jp-texi
                    172:
                    173: @menu
                    174: * dsolv_starting_term::
                    175: @end menu
                    176: @node dsolv_starting_term,,, DSOLV $BH!?t(B
                    177: @subsection @code{dsolv_starting_term}
                    178: @findex dsolv_starting_term
                    179: @table @t
                    180: @item dsolv_starting_term(@var{f},@var{v},@var{w})
                    181: :: $B@5B'%[%m%N%_%C%/7O(B @var{f} $B$NJ}8~(B @var{w} $B$G$N5i?t2r$N(B
                    182: Staring terms $B$r7W;;$9$k(B. $B$3$3$G(B, @var{v} $B$OJQ?t$N=89g(B.
                    183: @end table
                    184:
                    185: @table @var
                    186: @item $BLa$jCM(B
                    187: $B%j%9%H(B
                    188: @item f, v, w
                    189: $B%j%9%H(B
                    190: @end table
                    191:
                    192: @itemize @bullet
                    193: @item $B@5B'%[%m%N%_%C%/7O(B @var{f} $B$NJ}8~(B @var{w} $B$G$N5i?t2r$N(B
                    194: Staring terms $B$r7W;;$9$k(B. $B$3$3$G(B, @var{v} $B$OJQ?t$N=89g(B.
                    195: @item $BLa$jCM$O<!$N7A$r$7$F$$$k(B:
                    196: [[@var{e1}, @var{e2}, ...],
                    197:  [@var{s1}, @var{s2}, ...]]
                    198: $B$3$3$G(B @var{e1} $B$O(B exponent $B%Y%/%H%k$G$"$j(B @var{s1} $B$O$3$N%Y%/%H%k$K(B
                    199: $BBP1~$9$k2r$N=89g(B,   $B0J2<F1MM(B.
                    200: @item $BJQ?t(B @code{Dsolv_message_starting_term} $B$r(B 1 $B$K$7$F$*$/$H(B,
                    201: $B$3$NH!?t$O7W;;$NESCf$K$$$m$$$m$H%a%C%;!<%8$r=PNO$9$k(B.
                    202: @end itemize
                    203:
                    204: */
                    205:
                    206: /*&C-texi
                    207:
                    208: @example
                    209: [1076]   F = sm1_gkz( [ [[1,1,1,1,1],[1,1,0,-1,0],[0,1,1,-1,0]], [1,0,0]]);
                    210: [[x5*dx5+x4*dx4+x3*dx3+x2*dx2+x1*dx1-1,-x4*dx4+x2*dx2+x1*dx1,
                    211:   -x4*dx4+x3*dx3+x2*dx2,
                    212:   -dx2*dx5+dx1*dx3,dx5^2-dx2*dx4],[x1,x2,x3,x4,x5]]
                    213: [1077]  A= dsolv_starting_term(F[0],F[1],[1,1,1,1,0])$
                    214: Computing the initial ideal.
                    215: Done.
                    216: Computing a primary ideal decomposition.
                    217: Primary ideal decomposition of the initial Frobenius ideal
                    218: to the direction [1,1,1,1,0] is
                    219: [[[x5+2*x4+x3-1,x5+3*x4-x2-1,x5+2*x4+x1-1,3*x5^2+(8*x4-6)*x5-8*x4+3,
                    220:    x5^2-2*x5-8*x4^2+1,x5^3-3*x5^2+3*x5-1],
                    221:  [x5-1,x4,x3,x2,x1]]]
                    222:
                    223: ----------- root is [ 0 0 0 0 1 ]
                    224: ----------- dual system is
                    225: [x5^2+(-3/4*x4-1/2*x3-1/4*x2-1/2*x1)*x5+1/8*x4^2
                    226:  +(1/4*x3+1/4*x1)*x4+1/4*x2*x3-1/8*x2^2+1/4*x1*x2,
                    227:  x4-2*x3+3*x2-2*x1,x5-x3+x2-x1,1]
                    228:
                    229: [1078] A[0];
                    230: [[ 0 0 0 0 1 ]]
                    231: [1079] map(fctr,A[1][0]);
                    232: [[[1/8,1],[x5,1],[log(x2)+log(x4)-2*log(x5),1],
                    233:           [2*log(x1)-log(x2)+2*log(x3)+log(x4)-4*log(x5),1]],
                    234:  [[1,1],[x5,1],[-2*log(x1)+3*log(x2)-2*log(x3)+log(x4),1]],
                    235:  [[1,1],[x5,1],[-log(x1)+log(x2)-log(x3)+log(x5),1]],
                    236:  [[1,1],[x5,1]]]
                    237:
                    238: @end example
                    239:
                    240: */
                    241:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>