Annotation of OpenXM/src/asir-contrib/packages/doc/gnuplot.oxweave, Revision 1.1
1.1 ! takayama 1: /* $OpenXM$ */
! 2:
! 3:
! 4: /*&C-texi
! 5: @c DO NOT EDIT THIS FILE oxgnuplot.texi
! 6: */
! 7: /*&jp-texi
! 8: @node GNUPLOT $BH!?t(B,,, Top
! 9: @chapter GNUPLOT $BH!?t(B
! 10:
! 11: $B$3$N@a$G$O(B GNUPLOT $B$N(B ox $B%5!<%P(B @code{ox_sm1_gnuplot}
! 12: $B$H$N%$%s%?%U%'!<%94X?t$r2r@b$9$k(B.
! 13: $B$3$l$i$N4X?t$O%U%!%$%k(B @file{gnuplot} $B$GDj5A$5$l$F$$$k(B.
! 14: @code{gnuplot} $B$O(B
! 15: @file{$(OpenXM_HOME)/lib/asir-contrib/} $B$K$"$k(B.
! 16: */
! 17: /*&eg-texi
! 18: @node GNUPLOT Functions,,, Top
! 19: @chapter GNUPLOT Functions
! 20:
! 21: This chapter describes interface functions for
! 22: GNUPLOT ox server @code{ox_sm1_gnuplot}.
! 23: These interface functions are defined in the file @code{gnuplot}.
! 24: The file @file{gnuplot} is at @*
! 25: @file{$(OpenXM_HOME)/lib/asir-contrib}.
! 26: */
! 27: /*&C-texi
! 28: @example
! 29: @include opening.texi
! 30: [255] gnuplot.start();
! 31: 0
! 32: [257] gnuplot.gnuplot("plot sin(x**2);");
! 33: 0
! 34: @end example
! 35: */
! 36: /*&eg-texi
! 37: The function
! 38: @code{gnuplot.heat}(@var{dt},@var{step}) demonstrates our gnuplot interface.
! 39: It numerically solves the heat equation
! 40: @tex
! 41: $$ {{\partial u}\over{\partial t}} = {{\partial^2 u}\over{\partial x^2}},
! 42: \quad u(t,0) = u(t,1) =1
! 43: $$
! 44: with the initial condition
! 45: $$ u(0,x) = x, \ (0 \leq x \leq 0.5), \quad
! 46: u(1,x) = 1-x, \ (0.5 \leq x \leq 1)
! 47: $$
! 48: by the explicit scheme for $0 \leq t \leq \hbox{\it dt}*\hbox{\it step}$.
! 49: @end tex
! 50: The segment [0,1] is devided into @code{Heat_N} segments.
! 51: The static variable @code{Heat_N} can be set by the function
! 52: @code{gnuplot.heat_set_N}.
! 53: If the celebrated Courant-Friedrichs-Levi number
! 54: @var{dt}*@code{Heat_N}*@code{Heat_N} is less than or equal to 0.5,
! 55: then the explicit scheme is numerically stable.
! 56: One can observe the instability by changing CFL number.
! 57: @example
! 58: gnuplot.heat_set_N(20); gnuplot.heat(0.001,30); (CFL number is 0.4)
! 59: gnuplot.heat_set_N(20); gnuplot.heat(0.003,30); (CFL > 0.5 unstable)
! 60: @end example
! 61: */
! 62: /*&jp-texi
! 63: $B4X?t(B
! 64: @code{gnuplot.heat}(@var{dt},@var{step}) $B$O$o$l$o$l$N(B GNUPLOT $B%$%s%?%U%'!<%94X?t$N%G%b(B
! 65: $B$G$"$k(B.
! 66: $B$3$N4X?t$OG.EAF3J}Dx<0(B
! 67: @tex
! 68: $$ {{\partial u}\over{\partial t}} = {{\partial^2 u}\over{\partial x^2}},
! 69: \quad u(t,0) = u(t,1) =1
! 70: $$
! 71: $B$r=i4|>r7o(B
! 72: $$ u(0,x) = x, \ (0 \leq x \leq 0.5), \quad
! 73: u(1,x) = 1-x, \ (0.5 \leq x \leq 1)
! 74: $$
! 75: $B$GM[E*:9J,K!$rMQ$$$F(B
! 76: $B;~4V$,(B $0 \leq t \leq \hbox{\it dt}*\hbox{\it step}$ $B$NHO0O$G2r$/(B.
! 77: @end tex
! 78: $B6h4V(B [0,1] $B$O(B @code{Heat_N} $B8D$KJ,3d$5$l$k(B.
! 79: static $BJQ?t(B @code{Heat_N} $B$O(B
! 80: $B4X?t(B @code{gnuplot.set_heat_N} $B$G@_Dj$9$k(B.
! 81: $BM-L>$J(B Courant-Friedrichs-Levi $B?t(B
! 82: @var{dt}*@code{Heat_N}*@code{Heat_N} $B$,(B 0.5 $B0J2<$G$"$l$P(B,
! 83: $BM[E*:9J,%9%-!<%`$O0BDj$G$"$k(B.
! 84: CFL $B$rJQ$($k$3$H$K$h$j(B, $BIT0BDj@-$,@8$8$k$N$r4Q;!$G$-$k(B.
! 85: @example
! 86: gnuplot.set_heat_N(20); gnuplot.heat(0.001,30); (CFL number is 0.4)
! 87: gnuplot.set_heat_N(20); gnuplot.heat(0.003,30); (CFL > 0.5 unstable)
! 88: @end example
! 89: */
! 90: /*&C-texi
! 91: Author of @code{GNUPLOT}: Thomas Williams, Colin Kelley
! 92: */
! 93:
! 94: /*&jp-texi
! 95: @section $BH!?t0lMw(B
! 96: */
! 97: /*&eg-texi
! 98: @section Functions
! 99: */
! 100: /*&jp-texi
! 101: @menu
! 102: * gnuplot.start::
! 103: @end menu
! 104: @node gnuplot.start,,, GNUPLOT $BH!?t(B
! 105: @subsection @code{gnuplot.start}
! 106: @findex gnuplot.start
! 107: @table @t
! 108: @item gnuplot.start()
! 109: :: Localhost $B$G(B @code{ox_sm1_gnuplot} $B$r5/F0$9$k(B.
! 110: @end table
! 111:
! 112: @table @var
! 113: @item return
! 114: $B@0?t(B
! 115: @end table
! 116:
! 117: @itemize @bullet
! 118: @item Localhost $B$G(B @code{ox_sm1_gnuplot} $B$r5/F0$9$k(B.
! 119: $B5/F0$5$l$?(B @code{ox_sm1_gnuplot} $B$N<1JLHV9f$rLa$9(B.
! 120: @item @code{Xm_noX =1} $B$H$7$F$*$/$H(B, @code{ox_sm1_gnuplot} $BMQ$N(B debug window $B$,3+$+$J$$(B.
! 121: @item $B<1JLHV9f$O(B, @code{Gnuplot_proc} $B$K3JG<$5$l$k(B.
! 122: @end itemize
! 123: */
! 124: /*&eg-texi
! 125: @menu
! 126: * gnuplot.start::
! 127: @end menu
! 128: @node gnuplot.start,,, GNUPLOT Functions
! 129: @subsection @code{gnuplot.start}
! 130: @findex gnuplot.start
! 131: @table @t
! 132: @item gnuplot.start()
! 133: :: Start @code{ox_sm1_gnuplot} on the localhost.
! 134: @end table
! 135:
! 136: @table @var
! 137: @item return
! 138: Integer
! 139: @end table
! 140:
! 141: @itemize @bullet
! 142: @item Start @code{ox_sm1_gnuplot} on the localhost.
! 143: It returns the descriptor of @code{ox_sm1_gnuplot}.
! 144: @item Set @code{Xm_noX = 1} to start @code{ox_sm1_gnuplot} without a debug window.
! 145: @item The descriptor is stored in @code{Gnuplot_proc}.
! 146: @end itemize
! 147: */
! 148: /*&C-texi
! 149: @example
! 150: P = gnuplot.start();
! 151: @end example
! 152: */
! 153: /*&jp-texi
! 154: @table @t
! 155: @item $B;2>H(B
! 156: @code{ox_launch}, @code{gnuplot}
! 157: @end table
! 158: */
! 159: /*&eg-texi
! 160: @table @t
! 161: @item Reference
! 162: @code{ox_launch}, @code{gnuplot}
! 163: @end table
! 164: */
! 165:
! 166:
! 167: /*&eg-texi
! 168: @menu
! 169: * gnuplot::
! 170: @end menu
! 171: @node gnuplot,,, GNUPLOT Functions
! 172: @subsection @code{gnuplot}
! 173: @findex gnuplot
! 174: @table @t
! 175: @item gnuplot.gnuplot(@var{s}|proc=@var{p})
! 176: :: Ask GNUPLOT to execute the command string @var{s}.
! 177: @end table
! 178:
! 179: @table @var
! 180: @item return
! 181: Void
! 182: @item p
! 183: Number
! 184: @item s
! 185: String
! 186: @end table
! 187:
! 188: @itemize @bullet
! 189: @item
! 190: The server executes the gnuplot command @var{s}.
! 191: When an error occurs,
! 192: the gnuplot itself terminates and ox_sm1_gnuplot server automatically
! 193: restarts gnuplot.
! 194: @item
! 195: gnuplot does not accept a long polynomial.
! 196: @item
! 197: gnuplot does not accept @code{^}. Use @code{**} instead.
! 198: @end itemize
! 199: */
! 200: /*&jp-texi
! 201: @menu
! 202: * gnuplot::
! 203: @end menu
! 204: @node gnuplot,,, GNUPLOT $BH!?t(B
! 205: @subsection @code{gnuplot}
! 206: @findex gnuplot
! 207: @table @t
! 208: @item gnuplot.gnuplot(@var{s}|proc=@var{p})
! 209: :: GNUPLOT $B$K%3%^%s%I(B @var{s} $B$r<B9T$7$F$b$i$&(B.
! 210: @end table
! 211:
! 212: @table @var
! 213: @item return
! 214: $B$J$7(B
! 215: @item p
! 216: $B?t(B
! 217: @item s
! 218: $BJ8;zNs(B
! 219: @end table
! 220:
! 221: @itemize @bullet
! 222: @item
! 223: $B%5!<%P$O(B GNUPLOT $B$N%3%^%s%I(B @var{s} $B$r<B9T$9$k(B.
! 224: $B%(%i!<$,$*$-$?>l9g(B GNUPLOT $BK\BN$O=*N;$7$F$7$^$&$,(B,
! 225: @code{ox_sm1_gnuplot} $B$O<+F0E*$K(B GNUPLOT $BK\BN$r%j%9%?!<%H$9$k(B.
! 226: @item
! 227: GNUPLOT $B$OD9$$B?9`<0$r$?$@$7$/$&$1$D$1$J$$(B.
! 228: @item
! 229: GNUPLOT $B$O(B @code{^} $B$r$&$1$D$1$J$$(B. $B$+$o$j$K(B, @code{**} $B$r;H$&(B.
! 230: @end itemize
! 231: */
! 232: /*&C-texi
! 233: @example
! 234: [232] P = gnuplot.start();
! 235: 0
! 236: *Plot 3 dimensional graph.
! 237: [233] gnuplot.gnuplot("splot x**2-y**2;"|proc=P);
! 238: 0
! 239: *Plot 2 dimensional graph.
! 240: [234] gnuplot.gnuplot("plot [-pi:pi] [-2:2] cos(x);");
! 241: 0
! 242: *Output a graph as a postscript figure.
! 243: [235] gnuplot.output(|file="hoge.eps");
! 244: 0
! 245: [236] gnuplot.gnuplot("plot sin(x)*cos(x);");
! 246: 0
! 247: [237] gnuplot.gnuplot(|file="x11");
! 248: 0
! 249:
! 250: *Plot 3 dimensional graph hiding unvisible lines.
! 251: [236] gnuplot.gnuplot("set hidden3d");
! 252: 0
! 253: [237] gnuplot.gnuplot("splot (x**2+y**2)*sin(x**2+y**2)");
! 254: 0
! 255: [238] gnuplot.gnuplot("set isosamples 50");
! 256: 0
! 257: [239] gnuplot.gnuplot("splot (x**2+y**2)*sin(x**2+y**2)");
! 258:
! 259: @end example
! 260: */
! 261: /*&eg-texi
! 262: @table @t
! 263: @item Reference
! 264: @code{ox_launch}, @code{gnuplot.start}, @code{rtostr},
! 265: @code{gnuplot.plot_dots}
! 266: @item Reference Book
! 267: Yabuki Michiro, Otake Tuyoshi; Tukai konasu GNUPLOT, Techno Press,
! 268: in Japansese, ISBN4-924998-11-7
! 269: @end table
! 270: */
! 271: /*&jp-texi
! 272: @table @t
! 273: @item $B;2>H(B
! 274: @code{ox_launch}, @code{gnuplot.start}, @code{rtostr},
! 275: @code{gnuplot.plot_dots}
! 276: @item $B;29M=q(B
! 277: $BLp?aF;O:(B, $BBgC]$D$h$7(B; $B;H$$$3$J$9(B GNUPLOT, $B%F%/%N%W%l%9(B,
! 278: ISBN4-924998-11-7
! 279: @end table
! 280: */
! 281:
! 282:
! 283:
! 284: /*&eg-texi
! 285: @menu
! 286: * gnuplot.plot_dots::
! 287: @end menu
! 288: @node gnuplot.plot_dots,,, GNUPLOT Functions
! 289: @subsection @code{gnuplot.plot_dots}
! 290: @findex gnuplot.plot_dots
! 291: @table @t
! 292: @item gnuplot.plot_dots(@var{d},@var{s}|proc=@var{p})
! 293: :: Plot the dots @var{d} with the style @var{s}.
! 294: @end table
! 295:
! 296: @table @var
! 297: @item return
! 298: Void
! 299: @item p
! 300: Number
! 301: @item d
! 302: List
! 303: @item s
! 304: String or 0
! 305: @end table
! 306:
! 307: @itemize @bullet
! 308: @item
! 309: Plot the dots @var{d} with the style @var{s}.
! 310: @var{s} is a string of the form
! 311: "style color point".
! 312: Here,
! 313: style can be lines, points, linespoints, impulses, dots, steps,
! 314: errorbars, boxes, boxerrorbars.
! 315: color can be 1 (red), 2 (green), 3 (blue), 4, ... , 8.
! 316: point can be a number from 1 to 8.
! 317: The color and point field can be omitted.
! 318: @item
! 319: When @var{d} == @code{[ ]}, the screen will be cleared.
! 320: @end itemize
! 321: */
! 322: /*&jp-texi
! 323: @menu
! 324: * gnuplot.plot_dots::
! 325: @end menu
! 326: @node gnuplot.plot_dots,,, GNUPLOT $BH!?t(B
! 327: @subsection @code{gnuplot.plot_dots}
! 328: @findex gnuplot.plot_dots
! 329: @table @t
! 330: @item gnuplot.plot_dots(@var{d},@var{s}|proc=@var{p})
! 331: :: $BE@$N=89g(B @var{d} $B$r%9%?%$%k(B @var{s} $B$G%W%m%C%H$9$k(B.
! 332: @end table
! 333:
! 334: @table @var
! 335: @item return
! 336: $B$J$7(B
! 337: @item p
! 338: $B?t(B
! 339: @item d
! 340: $B%j%9%H(B
! 341: @item s
! 342: $BJ8;zNs(B $B$^$?$O(B 0
! 343: @end table
! 344:
! 345: @itemize @bullet
! 346: @item
! 347: $BE@=89g(B @var{d} $B$r%9%?%$%k(B @var{s} $B$G%W%m%C%H$9$k(B.
! 348: @var{s} $B$O<!$N$h$&$JJ8;zNs(B:
! 349: "style color point".
! 350: $B$3$3$G(B
! 351: style $B$K$O(B lines, points, linespoints, impulses, dots, steps,
! 352: errorbars, boxes, boxerrorbars
! 353: $B$rA*$Y$k(B.
! 354: color $B$K$O(B 1 (red), 2 (green), 3 (blue), 4, ... , 8
! 355: $B$rA*$Y$k(B.
! 356: point $B$O(B 1 $B$+$i(B 8 $B$N?t$rF~$l$k(B.
! 357: color, point $B$O>JN,$7$F$h$$(B.
! 358: @item
! 359: @var{d} == @code{[ ]} $B$N$H$-$O%9%/%j!<%s$,$^$:>C5n$5$l$k(B.
! 360: @end itemize
! 361: */
! 362: /*&C-texi
! 363: @example
! 364: [239] P = gnuplot.start();
! 365: 0
! 366: [240] gnuplot.plot_dots([ ],0);
! 367: 0
! 368: [241] for (I=0; I<10; I++) gnuplot.plot_dots([[I,I^2]]," lines ");
! 369: [242] A = [ ];
! 370: []
! 371: [243] for (I=0; I<10; I++) A = append(A,[ [I,I^2]]);
! 372: [244] A;
! 373: [[0,0],[1,1],[2,4],[3,9],[4,16],[5,25],[6,36],[7,49],[8,64],[9,81]]
! 374: [245] gnuplot.plot_dots(A," lines ");
! 375: 0
! 376: @end example
! 377: */
! 378: /*&jp-texi
! 379: @table @t
! 380: @item $B;2>H(B
! 381: @code{gnuplot.start}, @code{plot "fileName" with options}(GNUPLOT command),
! 382: @code{gnuplot.clean}, @code{gnuplot}
! 383: @end table
! 384: */
! 385: /*&eg-texi
! 386: @table @t
! 387: @item Reference
! 388: @code{gnuplot.start}, @code{plot "fileName" with options}(GNUPLOT command),
! 389: @code{gnuplot.clean}, @code{gnuplot}
! 390: @end table
! 391: */
! 392:
! 393:
! 394:
! 395: /** heat equation **/
! 396:
! 397: /*&eg-texi
! 398: @menu
! 399: * gnuplot.heat::
! 400: @end menu
! 401: @node gnuplot.heat,,, GNUPLOT Functions
! 402: @subsection @code{gnuplot.heat}
! 403: @findex gnuplot.heat
! 404: @table @t
! 405: @item gnuplot.heat(@var{dt},@var{step})
! 406: :: It solves the heat equation numerical and plots solutions
! 407: @end table
! 408:
! 409: @table @var
! 410: @item return
! 411: Void
! 412: @item dt
! 413: floating point number
! 414: @item step
! 415: Integer
! 416: @end table
! 417:
! 418: @itemize @bullet
! 419: @item It solves the heat equation
! 420: du/dt = d^2 u/dx^2, u(t,0) = u(t,1) = 0
! 421: with the initial condition
! 422: u(0,x) = x (0 <= x <= 0.5), u(0,x) = 1-x ( 0.5 <= x <= 1.0).
! 423: @item Heat_N is the number of the meshes in the space.
! 424: @item This function will be called @code{pde_heat_demo} in a future.
! 425: @end itemize
! 426:
! 427: @noindent
! 428: Algorithm: NOT Written. (Difference scheme. Courant-Levi-Friedrichs conditions.)
! 429: */
! 430: /*&jp-texi
! 431: @menu
! 432: * gnuplot.heat::
! 433: @end menu
! 434: @node gnuplot.heat,,, GNUPLOT $BH!?t(B
! 435: @subsection @code{gnuplot.heat}
! 436: @findex gnuplot.heat
! 437: @table @t
! 438: @item gnuplot.heat(@var{dt},@var{step})
! 439: :: $BG.EAF3J}Dx<0$r?tCME*$K2r$/(B.
! 440: @end table
! 441:
! 442: @table @var
! 443: @item return
! 444: $B$J$7(B
! 445: @item dt
! 446: $BIbF0>.?tE@?t(B
! 447: @item step
! 448: $B@0?t(B
! 449: @end table
! 450:
! 451: @itemize @bullet
! 452: @item $BG.EAF3J}Dx<0(B
! 453: du/dt = d^2 u/dx^2, u(t,0) = u(t,1) = 0
! 454: $B$r=i4|>r7o(B
! 455: u(0,x) = x (0 <= x <= 0.5), u(0,x) = 1-x ( 0.5 <= x <= 1.0)
! 456: $B$G2r$/(B.
! 457: @item Heat_N $B$O6u4VJ}8~$G$N%a%C%7%e$N?t(B.
! 458: @item $B$3$N4X?t$O>-Mh(B @code{pde_heat_demo} $B$H8F$P$l$kM=Dj(B.
! 459: @end itemize
! 460: */
! 461: /*&C-texi
! 462: @example
! 463: [232] Heat_N = 20$
! 464: [233] gnuplot.heat(0.001,30)$
! 465: @end example
! 466:
! 467: */
! 468:
! 469:
! 470:
! 471: /*&eg-texi
! 472: @menu
! 473: * gnuplot.output::
! 474: @end menu
! 475: @node gnuplot.output,,, GNUPLOT Functions
! 476: @subsection @code{gnuplot.output}
! 477: @findex gnuplot.output
! 478: @table @t
! 479: @item gnuplot.output(|@var{file=s})
! 480: :: ask @code{GNUPLOT} to output graphic to the file @var{s} in the Postscript format.
! 481: @end table
! 482:
! 483: @table @var
! 484: @item return
! 485: Void
! 486: @item s
! 487: String
! 488: @end table
! 489:
! 490: @itemize @bullet
! 491: @item ask @code{GNUPLOT} to output graphic to the file @var{s} in the Postscript format.
! 492: @item When @code{s} is "x11" or this function is called without the argument,
! 493: the output will be written to X11 display.
! 494: @end itemize
! 495: */
! 496: /*&jp-texi
! 497: @menu
! 498: * gnuplot.output::
! 499: @end menu
! 500: @node gnuplot.output,,, GNUPLOT $B4X?t(B
! 501: @subsection @code{gnuplot.output}
! 502: @findex gnuplot.output
! 503: @table @t
! 504: @item gnuplot.output(|@var{file=s})
! 505: :: @code{GNUPLOT} $B$K%U%!%$%k(B @var{s} $B$X%]%9%H%9%/%j%W%H$G=PNO$9$k$h$&$KMj$`(B.
! 506: @end table
! 507:
! 508: @table @var
! 509: @item return
! 510: Void
! 511: @item s
! 512: String
! 513: @end table
! 514:
! 515: @itemize @bullet
! 516: @item @code{GNUPLOT} $B$K%U%!%$%k(B @var{s} $B$X%]%9%H%9%/%j%W%H$G=PNO$9$k$h$&$KMj$`(B.
! 517: @item @code{s} $B$,(B "x11" $B$^$?$O(B, $B$3$N4X?t$r0z?tL5$7$G$h$V$H(B,
! 518: $B0J8e(B, X11 $B$N(B display $B$K(B graphics $B$,=PNO$5$l$k(B.
! 519: @end itemize
! 520: */
! 521:
! 522: /*&C-texi
! 523: @example
! 524: [273] gnuplot.output(|file="hoge.eps");
! 525: Graphic output of GNUPLOT will be written to hoge.eps as a Poscript file.
! 526: 0
! 527: [274] gnuplot.gnuplot("plot tan(x)+sin(x);");
! 528: 0
! 529: [275] gnuplot.output();
! 530: Usage of gnuplot.output: gnuplot.output(|file="string")
! 531: gnuplot.output(|file="x11")
! 532: Output device is set to X11
! 533: @end example
! 534: */
! 535:
! 536: /*&eg-texi
! 537: @table @t
! 538: @item Reference
! 539: @code{gnuplot}
! 540: @end table
! 541: */
! 542: /*&jp-texi
! 543: @table @t
! 544: @item $B;2>H(B
! 545: @code{gnuplot}
! 546: @end table
! 547: */
! 548:
! 549:
! 550: /*&eg-texi
! 551: @menu
! 552: * gnuplot::
! 553: @end menu
! 554: @node gnuplot.plot_function,,, GNUPLOT Functions
! 555: @subsection @code{gnuplot.plot_function}
! 556: @findex gnuplot.plot_function
! 557: @table @t
! 558: @item gnuplot.gnuplot(@var{f}|proc=@var{p})
! 559: :: ask the @code{gnuplot} server to draw a graph of @var{f}
! 560: @end table
! 561:
! 562: @table @var
! 563: @item return
! 564: Void
! 565: @item p
! 566: Number
! 567: @item f
! 568: Polynomial or a list of polynomials
! 569: @end table
! 570:
! 571: @itemize @bullet
! 572: @item ask the @code{gnuplot} server to draw a graph of @var{f}
! 573: @end itemize
! 574: */
! 575:
! 576: /*&jp-texi
! 577: @menu
! 578: * gnuplot::
! 579: @end menu
! 580: @node gnuplot.plot_function,,, GNUPLOT $BH!?t(B
! 581: @subsection @code{gnuplot.plot_function}
! 582: @findex gnuplot.plot_function
! 583: @table @t
! 584: @item gnuplot.gnuplot(@var{f}|proc=@var{p})
! 585: :: @code{gnuplot} $B%5!<%P$K(B @var{f} $B$N%0%i%U$r=q$/$h$&$KMj$`(B.
! 586: @end table
! 587:
! 588: @table @var
! 589: @item $BLa$jCM(B
! 590: $B$J$7(B
! 591: @item p
! 592: $B?t(B
! 593: @item f
! 594: $BB?9`<0$^$?$OB?9`<0$N%j%9%H(B
! 595: @end table
! 596:
! 597: @itemize @bullet
! 598: @item @code{gnuplot} $B%5!<%P$K(B @var{f} $B$N%0%i%U$r=q$/$h$&$KMj$`(B.
! 599: @end itemize
! 600: */
! 601: /*&C-texi
! 602:
! 603: @example
! 604: [290] gnuplot.plot_function((x+sin(x))^2);
! 605: 0
! 606: [291] gnuplot.plot_function([x,x^2,x^3]);
! 607: 0
! 608: @end example
! 609:
! 610: */
! 611:
! 612: /*&eg-texi
! 613: @table @t
! 614: @item Reference
! 615: @code{gnuplot.to_gnuplot_format}
! 616: @end table
! 617: */
! 618: /*&jp-texi
! 619: @table @t
! 620: @item $B;2>H(B
! 621: @code{gnuplot.to_gnuplot_format}
! 622: @end table
! 623: */
! 624:
! 625:
! 626: end$
! 627:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>