[BACK]Return to m.oxweave CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-contrib / packages / doc

Annotation of OpenXM/src/asir-contrib/packages/doc/m.oxweave, Revision 1.5

1.5     ! ohara       1: /* $OpenXM: OpenXM/src/asir-contrib/packages/doc/m.oxweave,v 1.4 2003/07/27 13:18:46 takayama Exp $ */
1.1       takayama    2: /* Use oxweave to generate documents on this source code
                      3:    Use iso-2022 to write this file. No default use of GL and GR is allowed.
                      4: */
                      5:
                      6:
                      7: /*&C-texi
                      8: @c DO NOT EDIT THIS FILE   oxmath.texi  It is automatically generated
                      9: @c from asir-contrib/packages/doc/m.oxweave
                     10: @node Mathematica Functions,,, Top
1.4       takayama   11: @menu
                     12: * mathematica.start::
                     13: * mathematica.tree_to_string::
                     14: * mathematica.rtomstr::
                     15: @end menu
                     16:
                     17:
1.1       takayama   18: */
1.5     ! ohara      19: /*&ja
1.1       takayama   20: @chapter Mathematica $BH!?t(B
                     21:
                     22: $B$3$N@a$G$O(B Mathematica $B$N(B ox $B%5!<%P(B @code{ox_math}
                     23: $B$H$N%$%s%?%U%'!<%94X?t$r2r@b$9$k(B.
                     24: $B$3$l$i$N4X?t$O%U%!%$%k(B  @file{m} $B$GDj5A$5$l$F$$$k$N$G$3$N%U%!%$%k$r(B
                     25: @code{load("m")$} $B$G$3$N%U%!%$%k$r%m!<%I$7$F$+$i;HMQ$7$J$$$H$$$1$J$$(B.
                     26: @file{m} $B$O(B @file{$(OpenXM_HOME)/lib/asir-contrib} $B$K$"$k(B.
                     27:
                     28: $BCm0U(B: @code{ox_reset} $B$OF0$+$J$$(B.
                     29: */
1.5     ! ohara      30: /*&en
1.1       takayama   31: @chapter Mathematica Functions
                     32:
                     33: This chapter describes  interface functions for
                     34: Mathematica ox server @code{ox_math}.
                     35: These interface functions are defined in the file @file{m}.
                     36: You need to load the file before using the interface functions.
                     37: by the command @code{load("m")$}.
                     38: The file @file{m} is at @file{$(OpenXM_HOME)/lib/asir-contrib}.
                     39:
                     40: Note: @code{ox_reset} does not work.
                     41: */
                     42: /*&C-texi
                     43: @example
                     44: @include opening.texi
                     45: [258] load("m")$
1.2       takayama   46: m Version 19991113. mathematica.start, mathematica.tree_to_string, mathematica.n_Eigenvalues
                     47: [259] mathematica.start();
1.1       takayama   48: ox_math has started.
                     49: ox_math: Portions copyright 2000 Wolfram Research, Inc.
                     50: See OpenXM/Copyright/Copyright.mathlink  for details.
                     51: 0
1.2       takayama   52: [260] mathematica.n_Eigenvalues([[1,2],[4,5]]);
1.1       takayama   53: [-0.464102,6.4641]
                     54: @end example
                     55: */
                     56:
                     57: /*&C-texi
                     58: @noindent
                     59: @code{Mathematica} is the trade mark of Wolfram Research Inc.
                     60: This package requires Mathmatica Version 3.0, so you need
                     61: Mathematica to make this package work.
                     62: See @code{http://www.wolfram.com}.
                     63: The copyright and license agreement of the mathlink is put at
                     64: @code{OpenXM/Copyright/Copyright.mathlink}
                     65: Note that the licence prohibits to connect to a mathematica
                     66: kernel via the internet.
                     67:
                     68: @noindent
                     69: Author of @code{ox_math}: Katsuyoshi Ohara,
                     70: @code{ohara@@air.s.kanazawa-u.ac.jp}.
                     71: */
                     72:
                     73:
1.5     ! ohara      74: /*&ja
1.1       takayama   75: @section $BH!?t0lMw(B
                     76: */
1.5     ! ohara      77: /*&en
1.1       takayama   78: @section Functions
                     79: */
1.5     ! ohara      80: /*&ja
1.2       takayama   81: @node mathematica.start,,, Mathematica Functions
                     82: @subsection @code{mathematica.start}
                     83: @findex mathematica.start
1.1       takayama   84: @table @t
1.2       takayama   85: @item mathematica.start()
1.1       takayama   86: ::  Localhost $B$G(B @code{ox_math} $B$r5/F0$9$k(B.
                     87: @end table
                     88:
                     89: @table @var
                     90: @item return
                     91: $B@0?t(B
                     92: @end table
                     93:
                     94: @itemize @bullet
                     95: @item Localhost $B$G(B @code{ox_math} $B$r5/F0$9$k(B.
                     96:     $B5/F0$5$l$?(B @code{ox_math} $B$N<1JLHV9f$rLa$9(B.
                     97: @item @code{Xm_noX =1} $B$H$7$F$*$/$H(B, @code{ox_math} $BMQ$N(B debug window $B$,3+$+$J$$(B.
                     98: @item $B<1JLHV9f$O(B @code{M_proc} $B$K3JG<$5$l$k(B.
                     99: @end itemize
                    100: */
1.5     ! ohara     101: /*&en
1.2       takayama  102: @node mathematica.start,,, Mathematica Functions
                    103: @subsection @code{mathematica.start}
                    104: @findex mathematica.start
1.1       takayama  105: @table @t
1.2       takayama  106: @item mathematica.start()
1.1       takayama  107: ::  Start  @code{ox_math} on the localhost.
                    108: @end table
                    109:
                    110: @table @var
                    111: @item return
                    112: Integer
                    113: @end table
                    114:
                    115: @itemize @bullet
                    116: @item Start @code{ox_math} on the localhost.
                    117:     It returns the descriptor of @code{ox_math}.
                    118: @item Set @code{Xm_noX = 1} to start @code{ox_math} without a debug window.
                    119: @item The descriptor is stored in the variable @code{M_proc}.
                    120: @end itemize
                    121: */
                    122: /*&C-texi
                    123: @example
1.2       takayama  124: P = mathematica.start()
1.1       takayama  125: @end example
                    126: */
1.5     ! ohara     127: /*&ja
1.1       takayama  128: @table @t
                    129: @item $B;2>H(B
                    130: @code{ox_launch}
                    131: @end table
                    132: */
1.5     ! ohara     133: /*&en
1.1       takayama  134: @table @t
                    135: @item Reference
                    136: @code{ox_launch}
                    137: @end table
                    138: */
                    139:
                    140: /*&jp
                    141:   $B0J2<$G(BMathematica $B$r8F$V$?$a$NJd=u4X?t$rDj5A$9$k(B.
                    142: */
                    143:
1.5     ! ohara     144: /*&ja
1.2       takayama  145: @node mathematica.tree_to_string,,, Mathematica Functions
                    146: @subsection @code{mathematica.tree_to_string}
                    147: @findex mathematica.tree_to_string
1.1       takayama  148: @table @t
1.2       takayama  149: @item mathematica.tree_to_string(@var{t})
1.1       takayama  150: ::  ox_math $B$NLa$9(B Mathematica $B$NLZ9=B$%G!<%?(B @var{t} $B$r(B @code{asir} $B7A<0$K(B
                    151: $B$J$*$9(B.
                    152: @end table
                    153:
                    154: @table @var
                    155: @item return
                    156: $BJ8;zNs(B
                    157: @item t
                    158: $B%j%9%H(B
                    159: @end table
                    160: @itemize @bullet
                    161: @item
                    162: t $B$O(B @code{ox_math} $B$NLa$9(B Mathematica $B$NLZ9=B$%G!<%?(B.
                    163: @item
                    164: ox_math $B$NLa$9(B Mathematica $B$NLZ9=B$%G!<%?(B @var{t} $B$r(B @code{asir} $B7A<0$K(B
                    165: $B$J$*$9(B.
                    166: @item
                    167:    @var{t} $B$r$J$k$Y$/(B asir $B$,M}2r$G$-$k7A$G$N(B, $BA0CV$^$?$OCfCV5-K!(B
                    168:    $B$NJ8;zNs$KJQ49$9$k(B.
                    169:    @var{t}$B$N@hF,MWAG$NJ8;zNs$,%-!<%o!<%I$G$"$k$,(B, $B$=$NJ8;z$,JQ49%F!<%V%k$K$J$$(B
                    170:    $B$H$-$O(B, @code{m_} $B$r%-!<%o!<%I$N@hF,$K$D$1$F(B, $B4X?t8F=P7A<0$NJ8;zNs$X(B
                    171:    $B$+$($k(B.
                    172: @end itemize
                    173: */
1.5     ! ohara     174: /*&en
1.2       takayama  175: @node mathematica.tree_to_string,,, Mathematica Functions
                    176: @subsection @code{mathematica.tree_to_string}
                    177: @findex mathematica.tree_to_string
1.1       takayama  178: @table @t
1.2       takayama  179: @item mathematica.tree_to_string(@var{t})
1.1       takayama  180: ::  translates Mathematica tree data  @var{t} into a string that can
                    181: be understandable by @code{asir} as far as possible.
                    182: @end table
                    183:
                    184: @table @var
                    185: @item return
                    186: String
                    187: @item t
                    188: List
                    189: @end table
                    190: @itemize @bullet
                    191: @item
                    192: t is a Mathematica tree data which is generated by @code{ox_math}.
                    193: @item
                    194: This function
                    195:  translates Mathematica tree data  @var{t} into a string that may
                    196: be understandable by @code{asir}.
                    197: @item
                    198:    This function translates @var{t} into a prefix or infix expression that may be understantable by @code{asir}.
                    199:    The first element of the list @var{t}
                    200:   is a key word string of the Mathematica object.
                    201:   If this function recognizes the key word, it translates @code{t} into
                    202:   the form that can be understandable by @code{asir}.
                    203:   If it cannot recognizes the key word, it translates @code{t} into
                    204:   a function call with the function name
                    205:   @code{m_(the key word)}.
                    206: @end itemize
                    207: */
                    208: /*&C-texi
                    209: @example
1.2       takayama  210: [267] mathematica.start();
1.1       takayama  211: 0
                    212: [268] ox_execute_string(0,"Expand[(x-1)^2]");
                    213: 0
                    214: [269] A=ox_pop_cmo(0);
                    215: [Plus,1,[Times,-2,x],[Power,x,2]]
1.2       takayama  216: [270] mathematica.tree_to_string(A);
1.1       takayama  217: (1)+((-2)*(x))+((x)^(2))
                    218: [271] eval_str(@@);
                    219: x^2-2*x+1
                    220: @end example
                    221: */
                    222: /*&C-texi
                    223: @example
1.2       takayama  224: [259] mathematica.tree_to_string(["List",1,2]);
1.1       takayama  225: [1 , 2]
1.2       takayama  226: [260] mathematica.tree_to_string(["Plus",2,3]);
1.1       takayama  227: (2)+(3)
1.2       takayama  228: [261] mathematica.tree_to_string(["Complex",2.3,4.55]);
                    229: mathematica.complex(2.3 , 4.55)
                    230: [362] mathematica.tree_to_string(["Plus",["Complex",1.2,3.5],1/2]);
                    231: (mathematica.complex(1.2 , 3.5))+(1/2)
1.1       takayama  232: [380] eval_str(@@);
1.3       takayama  233: (1.7+3.5*@@i)
1.1       takayama  234: @end example
                    235: */
1.5     ! ohara     236: /*&ja
1.1       takayama  237: @table @t
                    238: @item $B;2>H(B
1.2       takayama  239: @code{ox_pop_cmo}, @code{eval_str}, @code{mathematica.rtomstr}
1.1       takayama  240: @end table
                    241: */
1.5     ! ohara     242: /*&en
1.1       takayama  243: @table @t
                    244: @item Reference
1.2       takayama  245: @code{ox_pop_cmo}, @code{eval_str}, @code{mathematica.rtomstr}
1.1       takayama  246: @end table
                    247: */
                    248: /*&jp
                    249:   {\tt m\_tree\_to\_string(L)} $B$O(B, {\tt MathLink} $B$N(B $BLZ7A<0$GM?$($l$?(B
                    250:   $B%*%V%8%(%'%/%H$r$J$k$Y$/(B asir $B$,M}2r$G$-$k7A$G$N(B, $BA0CV$^$?$OCfCV5-K!(B
                    251:    $B$NJ8;zNs$KJQ49$9$k(B. \\
                    252:    $BNc(B: {\tt m\_tree\_to\_string(["Plus",1,2])} $B$OJ8;zNs(B
                    253:        {\tt 1+2} $B$rLa$9(B. \\
                    254:    $B%j%9%H$N@hF,$NJ8;zNs$,%-!<%o!<%I$G$"$k$,(B, $B$=$NJ8;z$,JQ49%F!<%V%k$K$J$$(B
                    255:    $B$H$-$O(B, {\tt m\_} $B$r%-!<%o!<%I$N@hF,$K$D$1$F(B, $B4X?t8F=P7A<0$NJ8;zNs$X(B
                    256:    $BJQ$($k(B.
                    257: */
                    258:
1.5     ! ohara     259: /*&ja
1.2       takayama  260: @node mathematica.rtomstr,,, Mathematica Functions
                    261: @subsection @code{mathematica.rtomstr}
                    262: @findex mathematica.rtomstr
1.1       takayama  263: @table @t
1.2       takayama  264: @item mathematica.rtomstr(@var{t})
1.1       takayama  265: ::  @var{t} $B$r$J$k$Y$/(B Mathematica $B$NM}2r2DG=$JJ8;zNs$KJQ$($k(B.
                    266: @end table
                    267:
                    268: @table @var
                    269: @item return
                    270: $BJ8;zNs(B
                    271: @item t
                    272: $B%*%V%8%'%/%H(B
                    273: @end table
                    274: @itemize @bullet
                    275: @item
                    276:    @var{t} $B$r$J$k$Y$/(B Mathematica $B$,M}2r$G$-$k7A$NJ8;zNs$KJQ49$9$k(B.
                    277:    $B$?$H$($P(B, @code{asir} $B$G$O%j%9%H$r(B @code{[}, @code{]} $B$G0O$`$,(B,
                    278:    Mathematica $B$G$O(B @code{@{}, @code{@}} $B$G0O$`(B.
                    279:    $B$3$N4X?t$O$3$NJQ49$r$*$3$J$&(B.
                    280: @end itemize
                    281: */
1.5     ! ohara     282: /*&en
1.2       takayama  283: @node mathematica.rtomstr,,, Mathematica Functions
                    284: @subsection @code{mathematica.rtomstr}
                    285: @findex mathematica.rtomstr
1.1       takayama  286: @table @t
1.2       takayama  287: @item mathematica.rtomstr(@var{t})
1.1       takayama  288: ::  translate the object @var{t} into a string that can be understandable
                    289: by Mathematica as far as possible.
                    290: @end table
                    291:
                    292: @table @var
                    293: @item return
                    294: String
                    295: @item t
                    296: Object
                    297: @end table
                    298: @itemize @bullet
                    299: @item
                    300:  It  translates the object @var{t} into a string that can be understandable
                    301: by Mathematica as far as possible.
                    302: For example, @code{asir} uses  @code{[}, @code{]} to express a list,
                    303: but @code{Mathematica} uses @code{@{}, @code{@}}.
                    304: This function makes this sort of translations.
                    305: @end itemize
                    306: */
                    307: /*&C-texi
                    308: @example
1.2       takayama  309: [259] mathematica.rtomstr([1,2,3]);
1.3       takayama  310: @{1,2,3@}
1.2       takayama  311: [260] mathematica.rtomstr([[1,x,x^2],[1,y,y^2]]);
1.1       takayama  312: @{@{1,x,x^2@},@{1,y,y^2@}@}
                    313: @end example
                    314: */
1.5     ! ohara     315: /*&ja
1.1       takayama  316: $B$b$&0l$DNc$r$"$2$h$&(B.
1.2       takayama  317: $B<!$N4X?t(B @code{mathematica.inverse(M)} $B$O(B @code{ox_math}
1.1       takayama  318: $B$r$h$s$G9TNs(B @code{M} $B$N5U9TNs$r7W;;$9$k4X?t$G$"$k(B.
1.2       takayama  319: @code{mathematica.inverse(M)} $B$O<!$N$h$&$K(B @code{r_tostr(M)} $B$rMQ$$$F(B
1.1       takayama  320: asir $B$N9TNs$r(B Mathematica $B7A<0$KJQ49$7$F$+$i(B
                    321: @code{ox_execute_string} $B$G(B Mathematica $B$K5U9TNs$r7W;;(B
                    322: $B$5$;$F$$$k(B.
                    323: */
1.5     ! ohara     324: /*&en
1.1       takayama  325: Let us see one more example.
1.2       takayama  326: The following function @code{mathematica.inverse(M)} outputs
1.1       takayama  327: the inverse matrix of the matrix @code{M} by calling @code{ox_math}.
                    328: It translates @code{asir} matrix @code{M} into a Mathematica expression
                    329: by @code{r_tostr(M)}
                    330: and makes Mathematica compute the inverse matrix of @code{M} by
                    331: @code{ox_execute_string}.
                    332: */
                    333: /*&C-texi
                    334: @example
                    335: def inverse(M) @{
                    336:   P = 0;
1.2       takayama  337:   A = mathematica.rtomstr(M);
1.1       takayama  338:   ox_execute_string(P,"Inverse["+A+"]");
                    339:   B = ox_pop_cmo(B);
1.2       takayama  340:   C = mathematica.tree_to_string(B);
1.1       takayama  341:   return(eval_str(C));
                    342: @}
                    343:
                    344: [269] M=[[1,x,x^2],[1,y,y^2],[1,z,z^2]];
                    345: [[1,x,x^2],[1,y,y^2],[1,z,z^2]]
1.2       takayama  346: [270] A=mathematica.inverse(M)$
1.1       takayama  347: [271] red(A[0][0]);
                    348: (z*y)/(x^2+(-y-z)*x+z*y)
                    349: @end example
                    350: */
1.5     ! ohara     351: /*&ja
1.1       takayama  352: @table @t
                    353: @item $B;2>H(B
                    354: @code{ox_execute_string}, @code{ToExpression}(Mathematica),
1.2       takayama  355: @code{mathematica.tree_to_string}
1.1       takayama  356: @end table
                    357: */
1.5     ! ohara     358: /*&en
1.1       takayama  359: @table @t
                    360: @item Reference
                    361: @code{ox_execute_string}, @code{ToExpression}(Mathematica),
1.2       takayama  362: @code{mathematica.tree_to_string}
1.1       takayama  363: @end table
                    364: */
                    365: /*&jp
1.2       takayama  366:   $B4X?t(B \verb+ mathematica.rtomstr(L) + $B$O(B asir $B7A<0$N%*%V%8%'%/%H(B L $B$r$J$k$Y$/(B
1.1       takayama  367:   Mathematica $B$,M}2r$G$-$k7A$NJ8;zNs$KJQ49$9$k(B.
                    368:   $B$?$H$($P(B, $B%j%9%H(B, $B%Y%/%H%k(B, $B9TNs(B $B$O(B asir $B$G$O(B {\tt [}, {\tt ]}
                    369:   $B$G0O$`$,(B, Mathematica $B$G$O(B, {\tt \{ }, {\tt \}} $B$G0O$`(B.
                    370:   $B8=:_$N$H$3$m$3$N4X?t$O$3$NJQ49$N$_9T$J$C$F$$$k(B. \\
                    371:   $BNc(B:
                    372:   {\footnotesize
                    373:   \begin{verbatim}
1.2       takayama  374:    [262] mathematica.rtomstr([1,2,3]);
1.1       takayama  375:    {1,2,3}
                    376:    [375] A = newvect(3,[x+2,"Hello",[1/2,3]]);
                    377:    [ x+2 Hello [1/2,3] ]
1.2       takayama  378:    [376] mathematica.rtomstr(A);
1.1       takayama  379:    {x+2,Hello,{1/2,3}}
                    380:   \end{verbatim}
                    381:   }
                    382: */
                    383:
                    384: end$
                    385:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>