=================================================================== RCS file: /home/cvs/OpenXM/src/asir-contrib/packages/doc/Attic/sm1.oxweave,v retrieving revision 1.10 retrieving revision 1.12 diff -u -p -r1.10 -r1.12 --- OpenXM/src/asir-contrib/packages/doc/Attic/sm1.oxweave 2003/05/20 23:25:28 1.10 +++ OpenXM/src/asir-contrib/packages/doc/Attic/sm1.oxweave 2003/07/28 01:17:39 1.12 @@ -1,10 +1,11 @@ -/*$OpenXM: OpenXM/src/asir-contrib/packages/doc/sm1.oxweave,v 1.9 2003/05/19 05:15:52 takayama Exp $ */ +/*$OpenXM: OpenXM/src/asir-contrib/packages/doc/sm1.oxweave,v 1.11 2003/07/27 13:18:46 takayama Exp $ */ /*&C-texi @c DO NOT EDIT THIS FILE oxphc.texi */ /*&C-texi @node SM1 Functions,,, Top + */ /*&jp-texi @chapter SM1 函数 @@ -86,7 +87,7 @@ Grobner Deformations of Hypergeometric Differential Eq See the appendix. */ -/* +/*&C-texi @menu * ox_sm1_forAsir:: * sm1.start:: @@ -95,7 +96,6 @@ See the appendix. * sm1.gb:: * sm1.deRham:: * sm1.hilbert:: -* hilbert_polynomial:: * sm1.genericAnn:: * sm1.wTensor0:: * sm1.reduction:: @@ -109,6 +109,13 @@ See the appendix. * sm1.rank:: * sm1.auto_reduce:: * sm1.slope:: +* sm1.gb_d:: +* sm1.syz_d:: +* sm1.ahg:: +* sm1.bfunction:: +* sm1.generalized_bfunction:: +* sm1.restriction:: +* sm1.saturation:: @end menu */ @@ -120,7 +127,7 @@ See the appendix. */ /*&eg-texi -@node ox_sm1_forAsir,,, Top +@node ox_sm1_forAsir,,, SM1 Functions @subsection @code{ox_sm1_forAsir} @findex ox_sm1_forAsir @table @t @@ -151,7 +158,7 @@ to build your own server by reading @code{sm1} macros. @end itemize */ /*&jp-texi -@node ox_sm1_forAsir,,, Top +@node ox_sm1_forAsir,,, SM1 Functions @subsection @code{ox_sm1_forAsir} @findex ox_sm1_forAsir @table @t @@ -1347,7 +1354,7 @@ Here @var{s} is the syzygy of @var{f} in the ring of d operators with the variable @var{v}. @var{g} is a Groebner basis of @var{f} with the weight vector @var{w}, and @var{m} is a matrix that translates the input matrix @var{f} to the Gr\"obner -basis @var {g}. +basis @var{g}. @var{t} is the syzygy of the Gr\"obner basis @var{g}. In summary, @var{g} = @var{m} @var{f} and @var{s} @var{f} = 0 hold as matrices.