=================================================================== RCS file: /home/cvs/OpenXM/src/asir-contrib/packages/doc/Attic/sm1.oxweave,v retrieving revision 1.11 retrieving revision 1.17 diff -u -p -r1.11 -r1.17 --- OpenXM/src/asir-contrib/packages/doc/Attic/sm1.oxweave 2003/07/27 13:18:46 1.11 +++ OpenXM/src/asir-contrib/packages/doc/Attic/sm1.oxweave 2004/05/14 01:25:03 1.17 @@ -1,13 +1,13 @@ -/*$OpenXM: OpenXM/src/asir-contrib/packages/doc/sm1.oxweave,v 1.10 2003/05/20 23:25:28 takayama Exp $ */ +/*$OpenXM: OpenXM/src/asir-contrib/packages/doc/sm1.oxweave,v 1.16 2004/03/05 19:05:11 ohara Exp $ */ -/*&C-texi +/*&C @c DO NOT EDIT THIS FILE oxphc.texi */ -/*&C-texi +/*&C @node SM1 Functions,,, Top */ -/*&jp-texi +/*&ja @chapter SM1 $BH!?t(B $B$3$N@a$G$O(B sm1 $B$N(B ox $B%5!<%P(B @code{ox_sm1_forAsir} @@ -33,7 +33,7 @@ $X$ $B$OJ?LL$KFs$D$N7j$r$"$1$?6u4V$G$"$k$N$G(B, $BE $BH(B @code{ox_launch}, @code{sm1.push_int0}, @code{sm1.push_poly0}, @@ -314,7 +312,7 @@ a*da -/*&eg-texi +/*&en @c sort-sm1 @node sm1.sm1,,, SM1 Functions @subsection @code{sm1.sm1} @@ -339,7 +337,7 @@ to execute the command string @var{s}. (In the next example, the descriptor number is 0.) @end itemize */ -/*&jp-texi +/*&ja @node sm1.sm1,,, SM1 Functions @subsection @code{sm1.sm1} @findex sm1.sm1 @@ -363,7 +361,7 @@ to execute the command string @var{s}. ($BH(B @code{sm1.start}, @code{ox_push_int0}, @code{sm1.push_poly0}, @code{sm1.get_Sm1_proc()}. @end table */ -/*&eg-texi +/*&en @table @t @item Reference @code{sm1.start}, @code{ox_push_int0}, @code{sm1.push_poly0}, @code{sm1.get_Sm1_proc()}. @@ -390,7 +388,7 @@ x^2-2*x+1 */ -/*&eg-texi +/*&en @c sort-sm1.push_int0 @node sm1.push_int0,,, SM1 Functions @subsection @code{sm1.push_int0} @@ -428,7 +426,7 @@ Note that @code{ox_push_cmo(@var{p},1234)} send the bi @item In other cases, @code{ox_push_cmo} is called without data conversion. @end itemize */ -/*&jp-texi +/*&ja @c sort-sm1.push_int0 @node sm1.push_int0,,, SM1 Functions @subsection @code{sm1.push_int0} @@ -484,13 +482,13 @@ x*dx+1 [1,2] @end example */ -/*&eg-texi +/*&en @table @t @item Reference @code{ox_push_cmo} @end table */ -/*&jp-texi +/*&ja @table @t @item Reference @code{ox_push_cmo} @@ -499,10 +497,9 @@ x*dx+1 -/*&eg-texi +/*&en @c sort-sm1.gb @node sm1.gb,,, SM1 Functions -@node sm1.gb_d,,, SM1 Functions @subsection @code{sm1.gb} @findex sm1.gb @findex sm1.gb_d @@ -557,10 +554,9 @@ List the polynomials are dehomogenized (,i.e., h is set to 1). @end itemize */ -/*&jp-texi +/*&ja @c sort-sm1.gb @node sm1.gb,,, SM1 Functions -@node sm1.gb_d,,, SM1 Functions @subsection @code{sm1.gb} @findex sm1.gb @findex sm1.gb_d @@ -608,13 +604,13 @@ List $BLa$jB?9`<0$O(B dehomogenize $B$5$l$k(B ($B$9$J$o$A(B h $B$K(B 1 $B$,BeF~$5$l$k(B). @end itemize */ -/*&C-texi +/*&C @example [293] sm1.gb([[x*dx+y*dy-1,x*y*dx*dy-2],[x,y]]); [[x*dx+y*dy-1,y^2*dy^2+2],[x*dx,y^2*dy^2]] @end example */ -/*&eg-texi +/*&en In the example above, @tex the set $\{ x \partial_x + y \partial_y -1, y^2 \partial_y^2+2\}$ @@ -625,7 +621,7 @@ The set $\{x \partial_x, y^2 \partial_y\}$ is the lead (the initial monominals) of the Gr\"obner basis. @end tex */ -/*&jp-texi +/*&ja $B>e$NNc$K$*$$$F(B, @tex $B=89g(B $\{ x \partial_x + y \partial_y -1, y^2 \partial_y^2+2\}$ @@ -637,13 +633,13 @@ graded reverse lexicographic order $B$K4X$9$k%0%l%V%J $BBP$9$k(B leading monomial (initial monomial) $B$G$"$k(B. @end tex */ -/*&C-texi +/*&C @example [294] sm1.gb([[dx^2+dy^2-4,dx*dy-1],[x,y],[[dx,50,dy,2,x,1]]]); [[dx+dy^3-4*dy,-dy^4+4*dy^2-1],[dx,-dy^4]] @end example */ -/*&eg-texi +/*&en In the example above, two monomials @tex $m = x^a y^b \partial_x^c \partial_y^d$ and @@ -656,7 +652,7 @@ compared by the reverse lexicographic order (i.e., if $50c+2d+a = 50c'+2d'+a'$, then use the reverse lexicogrpahic order). @end tex */ -/*&jp-texi +/*&ja $B>e$NNc$K$*$$$FFs$D$N%b%N%_%"%k(B @tex $m = x^a y^b \partial_x^c \partial_y^d$ $B$*$h$S(B @@ -670,14 +666,14 @@ $m' = x^{a'} y^{b'} \partial_x^{c'} \partial_y^{d'}$ $B$5$l$k(B). @end tex */ -/*&C-texi +/*&C @example [294] F=sm1.gb([[dx^2+dy^2-4,dx*dy-1],[x,y],[[dx,50,dy,2,x,1]]]|sorted=1); map(print,F[2][0])$ map(print,F[2][1])$ @end example */ -/*&C-texi +/*&C @example [595] sm1.gb([["dx*(x*dx +y*dy-2)-1","dy*(x*dx + y*dy -2)-1"], @@ -704,13 +700,13 @@ $m' = x^{a'} y^{b'} \partial_x^{c'} \partial_y^{d'}$ @end example */ -/*&eg-texi +/*&en @table @t @item Reference @code{sm1.reduction}, @code{sm1.rat_to_p} @end table */ -/*&jp-texi +/*&ja @table @t @item $B;2>H(B @code{sm1.reduction}, @code{sm1.rat_to_p} @@ -719,7 +715,7 @@ $m' = x^{a'} y^{b'} \partial_x^{c'} \partial_y^{d'}$ -/*&eg-texi +/*&en @c sort-sm1.deRham @node sm1.deRham,,, SM1 Functions @subsection @code{sm1.deRham} @@ -764,7 +760,7 @@ mode. So, it is strongly recommended to execute the co @code{ox_shutdown(sm1.get_Sm1_proc());} to interrupt and restart the server. @end itemize */ -/*&jp-texi +/*&ja @c sort-sm1.deRham @node sm1.deRham,,, SM1 Functions @subsection @code{sm1.deRham} @@ -808,7 +804,7 @@ mode. So, it is strongly recommended to execute the co $B$r0l;~(B shutdown $B$7$F%j%9%?!<%H$7$?J}$,0BA4$G$"$k(B. @end itemize */ -/*&C-texi +/*&C @example [332] sm1.deRham([x^3-y^2,[x,y]]); [1,1,0] @@ -816,7 +812,7 @@ mode. So, it is strongly recommended to execute the co [1,2] @end example */ -/*&eg-texi +/*&en @table @t @item Reference @code{sm1.start}, @code{deRham} (sm1 command) @@ -826,7 +822,7 @@ mode. So, it is strongly recommended to execute the co Journal of pure and applied algebra 139 (1999), 201--233. @end table */ -/*&jp-texi +/*&ja @table @t @item $B;2>H(B @code{sm1.start}, @code{deRham} (sm1 command) @@ -840,7 +836,7 @@ mode. So, it is strongly recommended to execute the co -/*&eg-texi +/*&en @c sort-sm1.hilbert @node sm1.hilbert,,, SM1 Functions @subsection @code{sm1.hilbert} @@ -882,7 +878,7 @@ List polynomials in @code{sm1} is slower than in @code{asir}. @end itemize */ -/*&jp-texi +/*&ja @c sort-sm1.hilbert @node sm1.hilbert,,, SM1 Functions @subsection @code{sm1.hilbert} @@ -921,7 +917,7 @@ List @end itemize */ -/*&C-texi +/*&C @example [346] load("katsura")$ @@ -951,13 +947,13 @@ List @end example */ -/*&eg-texi +/*&en @table @t @item Reference @code{sm1.start}, @code{sm1.gb}, @code{longname} @end table */ -/*&jp-texi +/*&ja @table @t @item $B;2>H(B @code{sm1.start}, @code{sm1.gb}, @code{longname} @@ -965,7 +961,7 @@ List */ -/*&eg-texi +/*&en @c sort-sm1.genericAnn @node sm1.genericAnn,,, SM1 Functions @subsection @code{sm1.genericAnn} @@ -994,7 +990,7 @@ List @var{f} is a polynomial in the variables @code{rest}(@var{v}). @end itemize */ -/*&jp-texi +/*&ja @c sort-sm1.genericAnn @node sm1.genericAnn,,, SM1 Functions @subsection @code{sm1.genericAnn} @@ -1024,19 +1020,19 @@ List @var{f} $B$OJQ?t(B @code{rest}(@var{v}) $B>e$NB?9`<0$G$"$k(B. @end itemize */ -/*&C-texi +/*&C @example [595] sm1.genericAnn([x^3+y^3+z^3,[s,x,y,z]]); [-x*dx-y*dy-z*dz+3*s,z^2*dy-y^2*dz,z^2*dx-x^2*dz,y^2*dx-x^2*dy] @end example */ -/*&eg-texi +/*&en @table @t @item Reference @code{sm1.start} @end table */ -/*&jp-texi +/*&ja @table @t @item $B;2>H(B @code{sm1.start} @@ -1045,7 +1041,7 @@ List -/*&eg-texi +/*&en @c sort-sm1.wTensor0 @node sm1.wTensor0,,, SM1 Functions @subsection @code{sm1.wTensor0} @@ -1086,7 +1082,7 @@ the inputs @var{f} and @var{g} are left ideals of D. @end itemize */ -/*&jp-texi +/*&ja @c sort-sm1.wTensor0 @node sm1.wTensor0,,, SM1 Functions @subsection @code{sm1.wTensor0} @@ -1126,7 +1122,7 @@ the inputs @var{f} and @var{g} are left ideals of D. $B0lHL$K(B, $B=PNO$O<+M32C72(B D^r $B$NItJ,2C72$G$"$k(B. @end itemize */ -/*&C-texi +/*&C @example [258] sm1.wTensor0([[x*dx -1, y*dy -4],[dx+dy,dx-dy^2],[x,y],[1,2]]); [[-y*x*dx-y*x*dy+4*x+y],[5*x*dx^2+5*x*dx+2*y*dy^2+(-2*y-6)*dy+3], @@ -1137,7 +1133,7 @@ the inputs @var{f} and @var{g} are left ideals of D. -/*&eg-texi +/*&en @c sort-sm1.reduction @node sm1.reduction,,, SM1 Functions @subsection @code{sm1.reduction} @@ -1175,7 +1171,7 @@ sm1.reduction_d(P,F,G) and sm1.reduction_noH_d(P,F,G) are for distributed polynomials. @end itemize */ -/*&jp-texi +/*&ja @node sm1.reduction,,, SM1 Functions @subsection @code{sm1.reduction} @findex sm1.reduction @@ -1214,7 +1210,7 @@ sm1.reduction_d(P,F,G) $B$*$h$S(B sm1.reduction_noH_ $B$O(B, $BJ,;6B?9`<0MQ$G$"$k(B. @end itemize */ -/*&C-texi +/*&C @example [259] sm1.reduction([x^2+y^2-4,[y^4-4*y^2+1,x+y^3-4*y],[x,y]]); [x^2+y^2-4,1,[0,0],[y^4-4*y^2+1,x+y^3-4*y]] @@ -1222,13 +1218,13 @@ sm1.reduction_d(P,F,G) $B$*$h$S(B sm1.reduction_noH_ [0,1,[-y^2+4,-x+y^3-4*y],[y^4-4*y^2+1,x+y^3-4*y]] @end example */ -/*&eg-texi +/*&en @table @t @item Reference @code{sm1.start}, @code{d_true_nf} @end table */ -/*&jp-texi +/*&ja @table @t @item $B;2>H(B @code{sm1.start}, @code{d_true_nf} @@ -1236,7 +1232,7 @@ sm1.reduction_d(P,F,G) $B$*$h$S(B sm1.reduction_noH_ */ -/*&eg-texi +/*&en @node sm1.xml_tree_to_prefix_string,,, SM1 Functions @subsection @code{sm1.xml_tree_to_prefix_string} @findex sm1.xml_tree_to_prefix_string @@ -1264,7 +1260,7 @@ asir has not yet understood this CMO. command search path.) @end itemize */ -/*&jp-texi +/*&ja @node sm1.xml_tree_to_prefix_string,,, SM1 Functions @subsection @code{sm1.xml_tree_to_prefix_string} @findex sm1.xml_tree_to_prefix_string @@ -1291,7 +1287,7 @@ String ($B$?$H$($P(B, /usr/local/jdk1.1.8/bin $B$r%3%^%s%I%5!<%A%Q%9$KF~$l$k$J$I(B.) @end itemize */ -/*&C-texi +/*&C @example [263] load("om"); 1 @@ -1308,13 +1304,13 @@ Trying to connect to the server... Done. basic_plus(basic_times(basic_power(x,4),1),basic_times(basic_power(x,0),-1)) @end example */ -/*&eg-texi +/*&en @table @t @item Reference @code{om_*}, @code{OpenXM/src/OpenMath}, @code{eval_str} @end table */ -/*&jp-texi +/*&ja @table @t @item $B;2>H(B @code{om_*}, @code{OpenXM/src/OpenMath}, @code{eval_str} @@ -1324,10 +1320,9 @@ basic_plus(basic_times(basic_power(x,4),1),basic_times -/*&eg-texi +/*&en @c sort-sm1.syz @node sm1.syz,,, SM1 Functions -@node sm1.syz_d,,, SM1 Functions @subsection @code{sm1.syz} @findex sm1.syz @findex sm1.syz_d @@ -1354,7 +1349,7 @@ Here @var{s} is the syzygy of @var{f} in the ring of d operators with the variable @var{v}. @var{g} is a Groebner basis of @var{f} with the weight vector @var{w}, and @var{m} is a matrix that translates the input matrix @var{f} to the Gr\"obner -basis @var {g}. +basis @var{g}. @var{t} is the syzygy of the Gr\"obner basis @var{g}. In summary, @var{g} = @var{m} @var{f} and @var{s} @var{f} = 0 hold as matrices. @@ -1368,10 +1363,9 @@ In summary, @var{g} = @var{m} @var{f} and The homogenization variable h is automatically added. @end itemize */ -/*&jp-texi +/*&ja @c sort-sm1.syz @node sm1.syz,,, SM1 Functions -@node sm1.syz_d,,, SM1 Functions @subsection @code{sm1.syz} @findex sm1.syz @findex sm1.syz_d @@ -1411,7 +1405,7 @@ syzygy $B$G$"$k(B. $BF1H(B @code{distraction2(sm1)}, @@ -1597,7 +1591,7 @@ x^2+3*x+2 -/*&eg-texi +/*&en @node sm1.gkz,,, SM1 Functions @subsection @code{sm1.gkz} @findex sm1.gkz @@ -1622,7 +1616,7 @@ List @end itemize */ -/*&jp-texi +/*&ja @node sm1.gkz,,, SM1 Functions @subsection @code{sm1.gkz} @findex sm1.gkz @@ -1645,7 +1639,7 @@ List @end itemize */ -/*&C-texi +/*&C @example @@ -1661,7 +1655,7 @@ List -/*&eg-texi +/*&en @node sm1.appell1,,, SM1 Functions @subsection @code{sm1.appell1} @findex sm1.appell1 @@ -1685,10 +1679,13 @@ F_D(a,b1,b2,...,bn,c;x1,...,xn) where @var{a} =(a,c,b1,...,bn). When n=2, the Lauricella function is called the Appell function F_1. The parameters a, c, b1, ..., bn may be rational numbers. +@item It does not call sm1 function appell1. As a concequence, +when parameters are rational or symbolic, this function also works +as well as integral parameters. @end itemize */ -/*&jp-texi +/*&ja @node sm1.appell1,,, SM1 Functions @subsection @code{sm1.appell1} @findex sm1.appell1 @@ -1712,10 +1709,12 @@ F_D(a,b1,b2,...,bn,c;x1,...,xn) $B$N$_$?$9HyJ,J}Dx<07O$rLa$9(B. $B$3$3$G(B, @var{a} =(a,c,b1,...,bn). $B%Q%i%a!<%?$OM-M}?t$G$b$h$$(B. +@item sm1 $B$N4X?t(B appell1 $B$r$h$V$o$1$G$J$$$N$G(B, $B%Q%i%a!<%?$,M-M}?t$dJ8;z<0$N>l9g$b(B +$B@5$7$/F0$/(B. @end itemize */ -/*&C-texi +/*&C @example @@ -1734,7 +1733,7 @@ F_D(a,b1,b2,...,bn,c;x1,...,xn) [x1*dx1*dx2,-x1^2*dx1^2,-x2^2*dx1*dx2,-x1*x2^2*dx2^2]] [283] sm1.rank(sm1.appell1([1/2,3,5,-1/3])); -1 +3 [285] Mu=2$ Beta = 1/3$ [287] sm1.rank(sm1.appell1([Mu+Beta,Mu+1,Beta,Beta,Beta])); @@ -1745,7 +1744,7 @@ F_D(a,b1,b2,...,bn,c;x1,...,xn) */ -/*&eg-texi +/*&en @node sm1.appell4,,, SM1 Functions @subsection @code{sm1.appell4} @findex sm1.appell4 @@ -1769,10 +1768,13 @@ F_4(a,b,c1,c2,...,cn;x1,...,xn) where @var{a} =(a,b,c1,...,cn). When n=2, the Lauricella function is called the Appell function F_4. The parameters a, b, c1, ..., cn may be rational numbers. +@item @item It does not call sm1 function appell4. As a concequence, +when parameters are rational or symbolic, this function also works +as well as integral parameters. @end itemize */ -/*&jp-texi +/*&ja @node sm1.appell4,,, SM1 Functions @subsection @code{sm1.appell4} @findex sm1.appell4 @@ -1796,10 +1798,12 @@ F_C(a,b,c1,c2,...,cn;x1,...,xn) $B$N$_$?$9HyJ,J}Dx<07O$rLa$9(B. $B$3$3$G(B, @var{a} =(a,b,c1,...,cn). $B%Q%i%a!<%?$OM-M}?t$G$b$h$$(B. +@item sm1 $B$N4X?t(B appell1 $B$r$h$V$o$1$G$J$$$N$G(B, $B%Q%i%a!<%?$,M-M}?t$dJ8;z<0$N>l9g$b(B +$B@5$7$/F0$/(B. @end itemize */ -/*&C-texi +/*&C @example @@ -1819,7 +1823,7 @@ F_C(a,b,c1,c2,...,cn;x1,...,xn) -/*&eg-texi +/*&en @node sm1.rank,,, SM1 Functions @subsection @code{sm1.rank} @findex sm1.rank @@ -1848,7 +1852,7 @@ holonomic. It is generally faster than @code{sm1.rank} @end itemize */ -/*&jp-texi +/*&ja @node sm1.rank,,, SM1 Functions @subsection @code{sm1.rank} @findex sm1.rank @@ -1876,7 +1880,7 @@ holonomic. It is generally faster than @code{sm1.rank} @end itemize */ -/*&C-texi +/*&C @example @@ -1899,7 +1903,7 @@ holonomic. It is generally faster than @code{sm1.rank} */ -/*&eg-texi +/*&en @node sm1.auto_reduce,,, SM1 Functions @subsection @code{sm1.auto_reduce} @findex sm1.auto_reduce @@ -1925,7 +1929,7 @@ Grobner bases. This is the default. @end itemize */ -/*&jp-texi +/*&ja @node sm1.auto_reduce,,, SM1 Functions @subsection @code{sm1.auto_reduce} @findex sm1.auto_reduce @@ -1953,7 +1957,7 @@ reduced $B%0%l%V%J4pDl$H$O$+$.$i$J$$(B. $B$3$A$i$,% -/*&eg-texi +/*&en @node sm1.slope,,, SM1 Functions @subsection @code{sm1.slope} @findex sm1.slope @@ -1998,7 +2002,7 @@ of the slopes are returned. */ -/*&jp-texi +/*&ja @node sm1.slope,,, SM1 Functions @subsection @code{sm1.slope} @findex sm1.slope @@ -2041,7 +2045,7 @@ Slope $B$NK\Mh$NDj5A$G$O(B, $BId9f$,Ii$H$J$k$,(B, Slope $B$N@dBPCM$rLa$9(B. */ -/*&C-texi +/*&C @example @@ -2060,13 +2064,13 @@ Slope $B$N@dBPCM$rLa$9(B. @end example */ -/*&eg-texi +/*&en @table @t @item Reference @code{sm.gb} @end table */ -/*&jp-texi +/*&ja @table @t @item $B;2>H(B @code{sm.gb} @@ -2074,12 +2078,12 @@ Slope $B$N@dBPCM$rLa$9(B. */ -/*&eg-texi -@include sm1-auto-en.texi +/*&en +@include sm1-auto.en */ -/*&jp-texi -@include sm1-auto-ja.texi +/*&ja +@include sm1-auto.ja */