=================================================================== RCS file: /home/cvs/OpenXM/src/asir-contrib/packages/doc/Attic/sm1.oxweave,v retrieving revision 1.14 retrieving revision 1.17 diff -u -p -r1.14 -r1.17 --- OpenXM/src/asir-contrib/packages/doc/Attic/sm1.oxweave 2004/03/05 15:30:50 1.14 +++ OpenXM/src/asir-contrib/packages/doc/Attic/sm1.oxweave 2004/05/14 01:25:03 1.17 @@ -1,9 +1,9 @@ -/*$OpenXM: OpenXM/src/asir-contrib/packages/doc/sm1.oxweave,v 1.13 2003/07/28 01:36:36 takayama Exp $ */ +/*$OpenXM: OpenXM/src/asir-contrib/packages/doc/sm1.oxweave,v 1.16 2004/03/05 19:05:11 ohara Exp $ */ -/*&C-texi +/*&C @c DO NOT EDIT THIS FILE oxphc.texi */ -/*&C-texi +/*&C @node SM1 Functions,,, Top */ @@ -68,7 +68,7 @@ Hence, the dimension of the first de Rham cohomology g cohomology groups. @end tex */ -/*&C-texi +/*&C @example @include opening.texi @@ -77,7 +77,7 @@ cohomology groups. [1,2] @end example */ -/*&C-texi +/*&C @noindent The author of @code{sm1} : Nobuki Takayama, @code{takayama@@math.sci.kobe-u.ac.jp} @* The author of sm1 packages : Toshinori Oaku, @code{oaku@@twcu.ac.jp} @* @@ -87,7 +87,7 @@ Grobner Deformations of Hypergeometric Differential Eq See the appendix. */ -/*&C-texi +/*&C @menu * ox_sm1_forAsir:: * sm1.start:: @@ -279,7 +279,7 @@ The descriptor can be obtained by the function $B$3$N<1JLHV9f$O4X?t(B @code{sm1.get_Sm1_proc()} $B$G$H$j$@$9$3$H$,$G$-$k(B. @end itemize */ -/*&C-texi +/*&C @example [260] ord([da,a,db,b]); [da,a,db,b,dx,dy,dz,x,y,z,dt,ds,t,s,u,v,w, @@ -361,7 +361,7 @@ to execute the command string @var{s}. ($Be$NB?9`<0$G$"$k(B. @end itemize */ -/*&C-texi +/*&C @example [595] sm1.genericAnn([x^3+y^3+z^3,[s,x,y,z]]); [-x*dx-y*dy-z*dz+3*s,z^2*dy-y^2*dz,z^2*dx-x^2*dz,y^2*dx-x^2*dy] @@ -1122,7 +1122,7 @@ the inputs @var{f} and @var{g} are left ideals of D. $B0lHL$K(B, $B=PNO$O<+M32C72(B D^r $B$NItJ,2C72$G$"$k(B. @end itemize */ -/*&C-texi +/*&C @example [258] sm1.wTensor0([[x*dx -1, y*dy -4],[dx+dy,dx-dy^2],[x,y],[1,2]]); [[-y*x*dx-y*x*dy+4*x+y],[5*x*dx^2+5*x*dx+2*y*dy^2+(-2*y-6)*dy+3], @@ -1210,7 +1210,7 @@ sm1.reduction_d(P,F,G) $B$*$h$S(B sm1.reduction_noH_ $B$O(B, $BJ,;6B?9`<0MQ$G$"$k(B. @end itemize */ -/*&C-texi +/*&C @example [259] sm1.reduction([x^2+y^2-4,[y^4-4*y^2+1,x+y^3-4*y],[x,y]]); [x^2+y^2-4,1,[0,0],[y^4-4*y^2+1,x+y^3-4*y]] @@ -1287,7 +1287,7 @@ String ($B$?$H$($P(B, /usr/local/jdk1.1.8/bin $B$r%3%^%s%I%5!<%A%Q%9$KF~$l$k$J$I(B.) @end itemize */ -/*&C-texi +/*&C @example [263] load("om"); 1 @@ -1405,7 +1405,7 @@ syzygy $B$G$"$k(B. $BF1l9g$b(B +$B@5$7$/F0$/(B. @end itemize */ -/*&C-texi +/*&C @example @@ -1728,7 +1733,7 @@ F_D(a,b1,b2,...,bn,c;x1,...,xn) [x1*dx1*dx2,-x1^2*dx1^2,-x2^2*dx1*dx2,-x1*x2^2*dx2^2]] [283] sm1.rank(sm1.appell1([1/2,3,5,-1/3])); -1 +3 [285] Mu=2$ Beta = 1/3$ [287] sm1.rank(sm1.appell1([Mu+Beta,Mu+1,Beta,Beta,Beta])); @@ -1763,6 +1768,9 @@ F_4(a,b,c1,c2,...,cn;x1,...,xn) where @var{a} =(a,b,c1,...,cn). When n=2, the Lauricella function is called the Appell function F_4. The parameters a, b, c1, ..., cn may be rational numbers. +@item @item It does not call sm1 function appell4. As a concequence, +when parameters are rational or symbolic, this function also works +as well as integral parameters. @end itemize */ @@ -1790,10 +1798,12 @@ F_C(a,b,c1,c2,...,cn;x1,...,xn) $B$N$_$?$9HyJ,J}Dx<07O$rLa$9(B. $B$3$3$G(B, @var{a} =(a,b,c1,...,cn). $B%Q%i%a!<%?$OM-M}?t$G$b$h$$(B. +@item sm1 $B$N4X?t(B appell1 $B$r$h$V$o$1$G$J$$$N$G(B, $B%Q%i%a!<%?$,M-M}?t$dJ8;z<0$N>l9g$b(B +$B@5$7$/F0$/(B. @end itemize */ -/*&C-texi +/*&C @example @@ -1870,7 +1880,7 @@ holonomic. It is generally faster than @code{sm1.rank} @end itemize */ -/*&C-texi +/*&C @example @@ -2035,7 +2045,7 @@ Slope $B$NK\Mh$NDj5A$G$O(B, $BId9f$,Ii$H$J$k$,(B, Slope $B$N@dBPCM$rLa$9(B. */ -/*&C-texi +/*&C @example @@ -2069,11 +2079,11 @@ Slope $B$N@dBPCM$rLa$9(B. /*&en -@include sm1-auto-en.texi +@include sm1-auto.en */ /*&ja -@include sm1-auto-ja.texi +@include sm1-auto.ja */