=================================================================== RCS file: /home/cvs/OpenXM/src/asir-contrib/packages/doc/Attic/sm1.oxweave,v retrieving revision 1.4 retrieving revision 1.6 diff -u -p -r1.4 -r1.6 --- OpenXM/src/asir-contrib/packages/doc/Attic/sm1.oxweave 2002/07/14 13:14:37 1.4 +++ OpenXM/src/asir-contrib/packages/doc/Attic/sm1.oxweave 2002/08/23 08:16:13 1.6 @@ -1,10 +1,12 @@ -/*$OpenXM: OpenXM/src/asir-contrib/packages/doc/sm1.oxweave,v 1.3 2001/07/12 00:46:29 takayama Exp $ */ +/*$OpenXM: OpenXM/src/asir-contrib/packages/doc/sm1.oxweave,v 1.5 2002/08/11 08:39:47 takayama Exp $ */ /*&C-texi @c DO NOT EDIT THIS FILE oxphc.texi */ +/*&C-texi +@node SM1 Functions,,, Top +*/ /*&jp-texi -@node SM1 $BH!?t(B,,, Top @chapter SM1 $BH!?t(B $B$3$N@a$G$O(B sm1 $B$N(B ox $B%5!<%P(B @code{ox_sm1_forAsir} @@ -31,7 +33,6 @@ $X$ $B$OJ?LL$KFs$D$N7j$r$"$1$?6u4V$G$"$k$N$G(B, $BE @end tex */ /*&eg-texi -@node SM1 Functions,,, Top @chapter SM1 Functions This chapter describes interface functions for @@ -69,12 +70,7 @@ cohomology groups. /*&C-texi @example -This is Risa/Asir, Version 20000126. -Copyright (C) FUJITSU LABORATORIES LIMITED. -1994-1999. All rights reserved. -xm version 20000202. Copyright (C) OpenXM Developing Team. 2000. -ox_help(0); ox_help("keyword"); ox_grep("keyword"); for help message -Loading ~/.asirrc +@include opening.texi [283] sm1_deRham([x*(x-1),[x]]); [1,2] @@ -89,6 +85,33 @@ Grobner Deformations of Hypergeometric Differential Eq 1999, Springer. See the appendix. */ + +/* +@menu +* ox_sm1_forAsir:: +* sm1_start:: +* sm1:: +* sm1_push_int0:: +* sm1_gb:: +* sm1_deRham:: +* sm1_hilbert:: +* hilbert_polynomial:: +* sm1_genericAnn:: +* sm1_wTensor0:: +* sm1_reduction:: +* sm1_xml_tree_to_prefix_string:: +* sm1_syz:: +* sm1_mul:: +* sm1_distraction:: +* sm1_gkz:: +* sm1_appell1:: +* sm1_appell4:: +* sm1_rank:: +* sm1_auto_reduce:: +* sm1_slope:: +@end menu +*/ + /*&jp-texi @section @code{ox_sm1_forAsir} $B%5!<%P(B */ @@ -97,9 +120,6 @@ See the appendix. */ /*&eg-texi -@menu -* ox_sm1_forAsir:: -@end menu @node ox_sm1_forAsir,,, Top @subsection @code{ox_sm1_forAsir} @findex ox_sm1_forAsir @@ -131,9 +151,6 @@ to build your own server by reading @code{sm1} macros. @end itemize */ /*&jp-texi -@menu -* ox_sm1_forAsir:: -@end menu @node ox_sm1_forAsir,,, Top @subsection @code{ox_sm1_forAsir} @findex ox_sm1_forAsir @@ -190,9 +207,6 @@ def sm1_check_server(P) { /*&eg-texi @c sort-sm1_start -@menu -* sm1_start:: -@end menu @node sm1_start,,, SM1 Functions @subsection @code{sm1_start} @findex sm1_start @@ -233,10 +247,7 @@ differential operators in default. (cf. @code{Sm1_ord_ */ /*&jp-texi @c sort-sm1_start -@menu -* sm1_start:: -@end menu -@node sm1_start,,, SM1 $BH!?t(B +@node sm1_start,,, SM1 Functions @subsection @code{sm1_start} @findex sm1_start @table @t @@ -337,9 +348,6 @@ def sm1push(P,F) { /*&eg-texi @c sort-sm1 -@menu -* sm1:: -@end menu @node sm1,,, SM1 Functions @subsection @code{sm1} @findex sm1 @@ -363,10 +371,7 @@ to execute the command string @var{s}. @end itemize */ /*&jp-texi -@menu -* sm1:: -@end menu -@node sm1,,, SM1 $BH!?t(B +@node sm1,,, SM1 Functions @subsection @code{sm1} @findex sm1 @table @t @@ -407,13 +412,13 @@ def sm1(P,F) { /*&jp-texi @table @t @item $B;2>H(B - @code{sm1_start}, @code{ox_push_int0}, @code{sm1_push_poly0}. + @code{sm1_start}, @code{ox_push_int0}, @code{sm1_push_poly0}, @code{Sm1_proc}. @end table */ /*&eg-texi @table @t @item Reference - @code{sm1_start}, @code{ox_push_int0}, @code{sm1_push_poly0}. + @code{sm1_start}, @code{ox_push_int0}, @code{sm1_push_poly0}, @code{Sm1_proc}. @end table */ @@ -523,9 +528,6 @@ def sm1_push_int0_R(A,P) { /*&eg-texi @c sort-sm1_push_int0 -@menu -* sm1_push_int0:: -@end menu @node sm1_push_int0,,, SM1 Functions @subsection @code{sm1_push_int0} @findex sm1_push_int0 @@ -564,10 +566,7 @@ Note that @code{ox_push_cmo(@var{p},1234)} send the bi */ /*&jp-texi @c sort-sm1_push_int0 -@menu -* sm1_push_int0:: -@end menu -@node sm1_push_int0,,, SM1 $BH!?t(B +@node sm1_push_int0,,, SM1 Functions @subsection @code{sm1_push_int0} @findex sm1_push_int0 @table @t @@ -759,9 +758,6 @@ def sm1_isListOfVar(A) { /*&eg-texi @c sort-sm1_gb -@menu -* sm1_gb:: -@end menu @node sm1_gb,,, SM1 Functions @node sm1_gb_d,,, SM1 Functions @subsection @code{sm1_gb} @@ -820,11 +816,8 @@ List */ /*&jp-texi @c sort-sm1_gb -@menu -* sm1_gb:: -@end menu -@node sm1_gb,,, SM1 $BH!?t(B -@node sm1_gb_d,,, SM1 $BH!?t(B +@node sm1_gb,,, SM1 Functions +@node sm1_gb_d,,, SM1 Functions @subsection @code{sm1_gb} @findex sm1_gb @findex sm1_gb_d @@ -1018,9 +1011,6 @@ def sm1_pgb(A) { /*&eg-texi @c sort-sm1_deRham -@menu -* sm1_deRham:: -@end menu @node sm1_deRham,,, SM1 Functions @subsection @code{sm1_deRham} @findex sm1_deRham @@ -1066,10 +1056,7 @@ mode. So, it is strongly recommended to execute the co */ /*&jp-texi @c sort-sm1_deRham -@menu -* sm1_deRham:: -@end menu -@node sm1_deRham,,, SM1 $BH!?t(B +@node sm1_deRham,,, SM1 Functions @subsection @code{sm1_deRham} @findex sm1_deRham @table @t @@ -1123,7 +1110,7 @@ mode. So, it is strongly recommended to execute the co @table @t @item Reference @code{sm1_start}, @code{deRham} (sm1 command) -@item Reference paper +@item Algorithm: Oaku, Takayama, An algorithm for de Rham cohomology groups of the complement of an affine variety via D-module computation, Journal of pure and applied algebra 139 (1999), 201--233. @@ -1133,7 +1120,7 @@ mode. So, it is strongly recommended to execute the co @table @t @item $B;2>H(B @code{sm1_start}, @code{deRham} (sm1 command) -@item $B;29MO@J8(B +@item Algorithm: Oaku, Takayama, An algorithm for de Rham cohomology groups of the complement of an affine variety via D-module computation, Journal of pure and applied algebra 139 (1999), 201--233. @@ -1243,10 +1230,6 @@ def sm1_reduction_noH_d(F,G) { /*&eg-texi @c sort-sm1_hilbert -@menu -* sm1_hilbert:: -* hilbert_polynomial:: -@end menu @node sm1_hilbert,,, SM1 Functions @subsection @code{sm1_hilbert} @findex sm1_hilbert @@ -1289,11 +1272,7 @@ List */ /*&jp-texi @c sort-sm1_hilbert -@menu -* sm1_hilbert:: -* hilbert_polynomial:: -@end menu -@node sm1_hilbert,,, SM1 $BH!?t(B +@node sm1_hilbert,,, SM1 Functions @subsection @code{sm1_hilbert} @findex sm1_hilbert @findex hilbert_polynomial @@ -1389,9 +1368,6 @@ def sm1_hilbert(A) { /*&eg-texi @c sort-sm1_genericAnn -@menu -* sm1_genericAnn:: -@end menu @node sm1_genericAnn,,, SM1 Functions @subsection @code{sm1_genericAnn} @findex sm1_genericAnn @@ -1421,10 +1397,7 @@ List */ /*&jp-texi @c sort-sm1_genericAnn -@menu -* sm1_genericAnn:: -@end menu -@node sm1_genericAnn,,, SM1 $BH!?t(B +@node sm1_genericAnn,,, SM1 Functions @subsection @code{sm1_genericAnn} @findex sm1_genericAnn @table @t @@ -1491,9 +1464,6 @@ def sm1_tensor0(F) { /*&eg-texi @c sort-sm1_wTensor0 -@menu -* sm1_wTensor0:: -@end menu @node sm1_wTensor0,,, SM1 Functions @subsection @code{sm1_wTensor0} @findex sm1_wTensor0 @@ -1535,10 +1505,7 @@ the inputs @var{f} and @var{g} are left ideals of D. /*&jp-texi @c sort-sm1_wTensor0 -@menu -* sm1_wTensor0:: -@end menu -@node sm1_wTensor0,,, SM1 $BH!?t(B +@node sm1_wTensor0,,, SM1 Functions @subsection @code{sm1_wTensor0} @findex sm1_wTensor0 @table @t @@ -1597,9 +1564,6 @@ def sm1_wTensor0(F) { /*&eg-texi @c sort-sm1_reduction -@menu -* sm1_reduction:: -@end menu @node sm1_reduction,,, SM1 Functions @subsection @code{sm1_reduction} @findex sm1_reduction @@ -1637,10 +1601,7 @@ are for distributed polynomials. @end itemize */ /*&jp-texi -@menu -* sm1_reduction:: -@end menu -@node sm1_reduction,,, SM1 $BH!?t(B +@node sm1_reduction,,, SM1 Functions @subsection @code{sm1_reduction} @findex sm1_reduction @table @t @@ -1734,9 +1695,6 @@ def sm1_reduction_noH(A) { } /*&eg-texi -@menu -* sm1_xml_tree_to_prefix_string:: -@end menu @node sm1_xml_tree_to_prefix_string,,, SM1 Functions @subsection @code{sm1_xml_tree_to_prefix_string} @findex sm1_xml_tree_to_prefix_string @@ -1765,10 +1723,7 @@ command search path.) @end itemize */ /*&jp-texi -@menu -* sm1_xml_tree_to_prefix_string:: -@end menu -@node sm1_xml_tree_to_prefix_string,,, SM1 $BH!?t(B +@node sm1_xml_tree_to_prefix_string,,, SM1 Functions @subsection @code{sm1_xml_tree_to_prefix_string} @findex sm1_xml_tree_to_prefix_string @table @t @@ -1891,9 +1846,6 @@ def sm1_res_div(A) { /*&eg-texi @c sort-sm1_syz -@menu -* sm1_syz:: -@end menu @node sm1_syz,,, SM1 Functions @node sm1_syz_d,,, SM1 Functions @subsection @code{sm1_syz} @@ -1938,11 +1890,8 @@ In summary, @var{g} = @var{m} @var{f} and */ /*&jp-texi @c sort-sm1_syz -@menu -* sm1_syz:: -@end menu -@node sm1_syz,,, SM1 $BH!?t(B -@node sm1_syz_d,,, SM1 $BH!?t(B +@node sm1_syz,,, SM1 Functions +@node sm1_syz_d,,, SM1 Functions @subsection @code{sm1_syz} @findex sm1_syz @findex sm1_syz_d @@ -2037,9 +1986,6 @@ def sm1_mul(A,B,V) { } /*&eg-texi -@menu -* sm1_mul:: -@end menu @node sm1_mul,,, SM1 Functions @subsection @code{sm1_mul} @findex sm1_mul @@ -2066,10 +2012,7 @@ List */ /*&jp-texi -@menu -* sm1_mul:: -@end menu -@node sm1_mul,,, SM1 $BH!?t(B +@node sm1_mul,,, SM1 Functions @subsection @code{sm1_mul} @findex sm1_mul @table @t @@ -2233,9 +2176,6 @@ def sm1_distraction(A) { } /*&eg-texi -@menu -* sm1_distraction:: -@end menu @node sm1_distraction,,, SM1 Functions @subsection @code{sm1_distraction} @findex sm1_distraction @@ -2267,10 +2207,7 @@ See Saito, Sturmfels, Takayama : Grobner Deformations */ /*&jp-texi -@menu -* sm1_distraction:: -@end menu -@node sm1_distraction,,, SM1 $BH!?t(B +@node sm1_distraction,,, SM1 Functions @subsection @code{sm1_distraction} @findex sm1_distraction @@ -2390,9 +2327,6 @@ def sm1_gkz(S) { /*&eg-texi -@menu -* sm1_gkz:: -@end menu @node sm1_gkz,,, SM1 Functions @subsection @code{sm1_gkz} @findex sm1_gkz @@ -2418,10 +2352,7 @@ List */ /*&jp-texi -@menu -* sm1_gkz:: -@end menu -@node sm1_gkz,,, SM1 $BH!?t(B +@node sm1_gkz,,, SM1 Functions @subsection @code{sm1_gkz} @findex sm1_gkz @table @t @@ -2503,9 +2434,6 @@ def sm1aux_x(I) { /*&eg-texi -@menu -* sm1_appell1:: -@end menu @node sm1_appell1,,, SM1 Functions @subsection @code{sm1_appell1} @findex sm1_appell1 @@ -2533,10 +2461,7 @@ The parameters a, c, b1, ..., bn may be rational numbe */ /*&jp-texi -@menu -* sm1_appell1:: -@end menu -@node sm1_appell1,,, SM1 $BH!?t(B +@node sm1_appell1,,, SM1 Functions @subsection @code{sm1_appell1} @findex sm1_appell1 @table @t @@ -2618,9 +2543,6 @@ def sm1_appell4(S) { } /*&eg-texi -@menu -* sm1_appell4:: -@end menu @node sm1_appell4,,, SM1 Functions @subsection @code{sm1_appell4} @findex sm1_appell4 @@ -2648,10 +2570,7 @@ The parameters a, b, c1, ..., cn may be rational numbe */ /*&jp-texi -@menu -* sm1_appell4:: -@end menu -@node sm1_appell4,,, SM1 $BH!?t(B +@node sm1_appell4,,, SM1 Functions @subsection @code{sm1_appell4} @findex sm1_appell4 @table @t @@ -2715,9 +2634,6 @@ def sm1_rrank(A) { /*&eg-texi -@menu -* sm1_rank:: -@end menu @node sm1_rank,,, SM1 Functions @subsection @code{sm1_rank} @findex sm1_rank @@ -2747,10 +2663,7 @@ holonomic. It is generally faster than @code{sm1_rank} */ /*&jp-texi -@menu -* sm1_rank:: -@end menu -@node sm1_rank,,, SM1 $BH!?t(B +@node sm1_rank,,, SM1 Functions @subsection @code{sm1_rank} @findex sm1_rank @table @t @@ -2808,9 +2721,6 @@ def sm1_auto_reduce(T) { } /*&eg-texi -@menu -* sm1_auto_reduce:: -@end menu @node sm1_auto_reduce,,, SM1 Functions @subsection @code{sm1_auto_reduce} @findex sm1_auto_reduce @@ -2837,10 +2747,7 @@ Grobner bases. This is the default. */ /*&jp-texi -@menu -* sm1_auto_reduce:: -@end menu -@node sm1_auto_reduce,,, SM1 $BH!?t(B +@node sm1_auto_reduce,,, SM1 Functions @subsection @code{sm1_auto_reduce} @findex sm1_auto_reduce @table @t @@ -2878,9 +2785,6 @@ def sm1_slope(II,V,FF,VF) { /*&eg-texi -@menu -* sm1_slope:: -@end menu @node sm1_slope,,, SM1 Functions @subsection @code{sm1_slope} @findex sm1_slope @@ -2910,23 +2814,23 @@ of the system of differential equations @var{ii} along the hyperplane specified by the V filtration @var{v_filtration}. @item @var{v} is a list of variables. -@item As to the algorithm, -see "A.Assi, F.J.Castro-Jimenez and J.M.Granger, -How to calculate the slopes of a D-module, Compositio Math, 104, 1-17, 1996" -Note that the signs of the slopes are negative, but the absolute values -of the slopes are returned. @item The return value is a list of lists. The first entry of each list is the slope and the second entry is the weight vector for which the microcharacteristic variety is not bihomogeneous. @end itemize + +@noindent +Algorithm: +see "A.Assi, F.J.Castro-Jimenez and J.M.Granger, +How to calculate the slopes of a D-module, Compositio Math, 104, 1-17, 1996" +Note that the signs of the slopes are negative, but the absolute values +of the slopes are returned. + */ /*&jp-texi -@menu -* sm1_slope:: -@end menu -@node sm1_slope,,, SM1 $BH!?t(B +@node sm1_slope,,, SM1 Functions @subsection @code{sm1_slope} @findex sm1_slope @table @t @@ -2954,16 +2858,18 @@ not bihomogeneous. $BHyJ,J}Dx<07O(B @var{ii} $B$N(B V filtration @var{v_filtration} $B$G;XDj$9$kD6J?LL$K1h$C$F$N(B (geomeric) slope $B$r7W;;$9$k(B. @item @var{v} $B$OJQ?t$N%j%9%H(B. -@item $B;HMQ$7$F$$$k%"%k%4%j%:%`$K$D$$$F$O(B, +@item $BLa$jCM$O(B, $B%j%9%H$r@.J,$H$9$k%j%9%H$G$"$k(B. +$B@.J,%j%9%H$NBh(B 1 $BMWAG$,(B slope, $BBh(B 2 $BMWAG$O(B, $B$=$N(B weight vector $B$KBP1~$9$k(B +microcharacteristic variety $B$,(B bihomogeneous $B$G$J$$(B. +@end itemize + +@noindent +Algorithm: "A.Assi, F.J.Castro-Jimenez and J.M.Granger, How to calculate the slopes of a D-module, Compositio Math, 104, 1-17, 1996" $B$r$_$h(B. Slope $B$NK\Mh$NDj5A$G$O(B, $BId9f$,Ii$H$J$k$,(B, $B$3$N%W%m%0%i%`$O(B, Slope $B$N@dBPCM$rLa$9(B. -@item $BLa$jCM$O(B, $B%j%9%H$r@.J,$H$9$k%j%9%H$G$"$k(B. -$B@.J,%j%9%H$NBh(B 1 $BMWAG$,(B slope, $BBh(B 2 $BMWAG$O(B, $B$=$N(B weight vector $B$KBP1~$9$k(B -microcharacteristic variety $B$,(B bihomogeneous $B$G$J$$(B. -@end itemize */ /*&C-texi