Annotation of OpenXM/src/asir-contrib/packages/doc/tigers.oxweave, Revision 1.3
1.3 ! ohara 1: /* $OpenXM: OpenXM/src/asir-contrib/packages/doc/tigers.oxweave,v 1.2 2004/03/05 15:30:50 ohara Exp $ */
1.1 takayama 2:
3:
1.3 ! ohara 4: /*&C
1.1 takayama 5: @node TIGERS Functions,,, Top
6: */
1.2 ohara 7: /*&en
1.1 takayama 8: @chapter TIGERS Functions
9:
10: This chapter describes interface functions for
11: tigers ox server @code{ox_sm1_tigers}.
12: */
1.2 ohara 13: /*&ja
1.1 takayama 14: @chapter TIGERS $BH!?t(B
15:
16: $B$3$N>O$G$O(B,
17: tigers ox server @code{ox_sm1_tigers}
18: $B$K$?$$$9$k%$%s%?%U%'!<%9H!?t$r@bL@$9$k(B.
19: */
20:
1.2 ohara 21: /*&en
1.1 takayama 22: @menu
23: * tigers.tigers::
24: @end menu
25: @node tigers.tigers,,, TIGERS Functions
26: @subsection @code{tigers.tigers}
27: @findex tigers.tigers
28: @table @t
29: @item tigers.tigers(@var{a}|proc=@var{a})
30: :: It asks the @code{tigers} server of the descriptor number @var{p}
31: to enumerate all Grobner bases associated to the toric variaty
32: defined by the matrix @var{a}.
33: @end table
34:
35: @table @var
36: @item return
37: List
38: @item p
39: Number
40: @item a
41: List
42: @end table
43:
44: @itemize @bullet
45: @item It asks the @code{tigers} server of the descriptor number @var{p}
46: to enumerate all Grobner bases associated to the toric variaty
47: defined by the matrix @var{a}.
48: @item
49: The system tigers is an expert system to enumerate
50: all Gr\"obner bases of affine toric ideals.
51: In other words, it can be used to determine the state polytope
52: of a given affine toric ideal.
53: As to a theoretical background, see the book @*
54: B.Sturmfels, Grobner bases and Convex Polytopes. @*
55: The original tigers is written by Birk Hubert.
56: The algorithm used in explained in the paper @*
57: B.Huber and R.Thomas, Computing Grobner Fans of Toric Ideals.
58: @end itemize
59: */
60:
1.2 ohara 61: /*&ja
1.1 takayama 62: @menu
63: * tigers.tigers::
64: @end menu
65: @node tigers.tigers,,, TIGERS Functions
66: @subsection @code{tigers.tigers}
67: @findex tigers.tigers
68: @table @t
69: @item tigers.tigers(@var{a}|proc=@var{a})
70: :: $B$3$NH!?t$O<1JL;R(B @var{p} $B$N(B tigers $B%5!<%P$K(B
71: $B9TNs(B @var{a} $B$KIU?o$7$?%H!<%j%C%/%$%G%"%k$N$9$Y$F$N%0%l%V%J4pDl$r(B
72: $B7W;;$7$F$/$l$k$h$&$K$?$N$`(B.
73: @end table
74:
75: @table @var
76: @item $BLa$jCM(B
77: $B%j%9%H(B
78: @item p
79: $B?t(B
80: @item a
81: $B%j%9%H(B
82: @end table
83:
84: @itemize @bullet
85: @item
86: $B$3$NH!?t$O<1JL;R(B @var{p} $B$N(B tigers $B%5!<%P$K(B
87: $B9TNs(B @var{a} $B$KIU?o$7$?%H!<%j%C%/%$%G%"%k$N$9$Y$F$N%0%l%V%J4pDl$r(B
88: $B7W;;$7$F$/$l$k$h$&$K$?$N$`(B.
89: @item
90: Tigers $B$O(B $B%"%U%#%s%H!<%j%C%/%$%G%"%k$N(B reduced $B%0%l%V%J4pDl$r(B
91: $B$9$Y$F?t$($"$2$k$?$a$N@lMQ$N%W%m%0%i%`$G$"$k(B.
92: $B$3$N%W%m%0%i%`$O(B, $B%"%U%#%s%H!<%j%C%/%$%G%"%k$N(B state polytope
93: $B$r$-$a$k$?$a$K;H$($k(B.
94: $BM}O@E*$J%P%C%/%0%i%&%s%I$K$D$$$F$O(B,
95: $BK\(B @*
96: B.Sturmfels, Grobner bases and Convex Polytopes @*
97: $B$r8+$h(B.
98: Tigers $B$O(B Birk Hubert $B$,:n<T$G$"$k(B.
99: $B$3$N%W%m%0%i%`$NMxMQ$7$F$$$k%"%k%4%j%:%`$O(B @*
100: B.Huber and R.Thomas, Computing Grobner Fans of Toric Ideals @*
101: $B$K@bL@$5$l$F$$$k(B.
102: @end itemize
103: */
104:
1.3 ! ohara 105: /*&C
1.1 takayama 106:
107: @example
108: [395] A=[[1,1,1,1],[0,1,2,3]]$
109: [306] S=tigers.tigers(A)$
110: [307] length(S);
111: 8
112: [308] S[0];
113: [[[1,0,1,0],[0,2,0,0]],[[1,0,0,1],[0,1,1,0]],[[0,1,0,1],[0,0,2,0]]]
114: [309] S[1];
115: [[[1,0,0,1],[0,1,1,0]],[[0,2,0,0],[1,0,1,0]],[[0,1,0,1],[0,0,2,0]]]
116:
117: @end example
118:
119: */
120:
1.2 ohara 121: /*&en
1.1 takayama 122: In this example, all reduced Grobner bases for the toric ideal
123: associated to the matrix @var{A} are stored in @var{S}.
124: There are eight distinct Grobner bases of @var{A}.
125: [[i_1, i_2, ...],[j_1, j_2, ...]] is a set of exponents of
126: two monomials and stands for a binomial.
127: For example,
128: the S[0] consists of @*
129: x1 x3 - x2^2, x1 x4 - x2 x3, x2 x4 - x3^2. @*
130: <x1 x3, x1 x4, x2 x4> is the initial ideal of S[0].
131:
132: */
1.2 ohara 133: /*&ja
1.1 takayama 134: $B$3$NNc$G$O(B, @var{A} $B$KIU?o$7$?%"%U%#%s%H!<%j%C%/%$%G%"%k$N(B
135: $B$9$Y$F$N%0%l%V%J4pDl$,(B @var{S} $B$K3JG<$5$l$k(B.
136: $B$3$NNc$G$O(B, 8 $B8D$N%0%l%V%J4pDl$,$"$k(B.
137: [[i_1, i_2, ...],[j_1, j_2, ...]] $B$OFs$D$N%b%N%_%"%k$N(B
138: exponent $B$r$J$i$Y$?$b$N$G$"$j(B, 2 $B9`<0$r$"$i$o$9(B.
139: $B$?$H$($P(B,
140: S[0] $B$O<!$NB?9`<0$N=89g(B @*
141: x1 x3 - x2^2, x1 x4 - x2 x3, x2 x4 - x3^2 @*
142: $B$G$"$j(B,
143: <x1 x3, x1 x4, x2 x4> $B$,$=$N(B initial ideal $B$G$"$k(B.
144:
145: */
146:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>