=================================================================== RCS file: /home/cvs/OpenXM/src/asir-contrib/packages/doc/gtt_ekn/gtt_ekn-ja.texi,v retrieving revision 1.10 retrieving revision 1.15 diff -u -p -r1.10 -r1.15 --- OpenXM/src/asir-contrib/packages/doc/gtt_ekn/gtt_ekn-ja.texi 2019/02/14 05:46:51 1.10 +++ OpenXM/src/asir-contrib/packages/doc/gtt_ekn/gtt_ekn-ja.texi 2019/03/20 02:08:55 1.15 @@ -1,5 +1,5 @@ -%% $OpenXM: OpenXM/src/asir-contrib/packages/doc/gtt_ekn/gtt_ekn-ja.texi,v 1.9 2019/02/14 02:22:09 takayama Exp $ -%% xetex gtt_ekn.texi (.texi までつける. ) +%% $OpenXM: OpenXM/src/asir-contrib/packages/doc/gtt_ekn/gtt_ekn-ja.texi,v 1.14 2019/03/19 07:36:21 takayama Exp $ +%% xetex gtt_ekn-ja.texi (.texi までつける. ) %% 以下コメントは @comment で始める. \input texinfo 以降は普通の tex 命令は使えない. \input texinfo-ja @iftex @@ -41,7 +41,7 @@ @title 2元分割表HGM関数 @subtitle Risa/Asir 2元分割表HGM関数説明書 @subtitle 1.2 版 -@subtitle 2019 年 2 月 14 日 +@subtitle 2019 年 3 月 20 日 @author by Y.Goto, Y.Tachibana, N.Takayama @page @@ -80,8 +80,10 @@ ChangeLog の項目は www.openxm.org の cvsweb で ソースコードを読む時の助けになる情報が書かれている. このパッケージは下記のようにロードする. @example -load("gtt_ekn.rr"); +load("gtt_ekn3.rr"); @end example +gtt_ekn3.rr は gtt_ekn.rr を置き換える大きく改良されたパッケージである. +以下のモジュール名 gtt_ekn はすべて gtt_ekn3 と読み替えてほしい. @noindent 最新版の asir-contrib package を取得するには, 下記のように更新関数を呼び出す. @example @@ -128,9 +130,12 @@ gtt_ekn/test-t1.rr * gtt_ekn.upAlpha:: * gtt_ekn.cmle:: * gtt_ekn.set_debug_level:: +* gtt_ekn.contiguity_mat_list_2:: * gtt_ekn.show_path:: +* gtt_ekn.get_svalue:: * gtt_ekn.assert1:: * gtt_ekn.assert2:: +* gtt_ekn.prob2:: @end menu @node 超幾何関数E(k,n),,, 2元分割表HGMの関数 @@ -731,18 +736,21 @@ ChangeLog @comment --- 個々の関数の説明の開始 --- @comment --- section 名を正確に --- @node gtt_ekn.upAlpha,,, 超幾何関数E(k,n) -@subsection @code{gtt_ekn.upAlpha} +@node gtt_ekn.downAlpha,,, 超幾何関数E(k,n) +@subsection @code{gtt_ekn.upAlpha}, @code{gtt_ekn.downAlpha} @comment --- 索引用キーワード @findex gtt_ekn.upAlpha +@findex gtt_ekn.downAlpha @table @t @item gtt_ekn.upAlpha(@var{i},@var{k},@var{n}) +@item gtt_ekn.downAlpha(@var{i},@var{k},@var{n}) :: @end table @comment --- 引数の簡単な説明 --- 以下まだ書いてない. @table @var -@item i a_i を a_i+1 と変化させる contiguity relation. +@item i a_i を a_i+1 (a_i を a_i-1) と変化させる contiguity relation. @item k E(k+1,n+k+2)型の超幾何関数の k. 分割表では (k+1)×(n+1). @item n E(k+1,n+k+2)型の超幾何関数の n. 分割表では (k+1)×(n+1). @item return contiguity relation の pfaffian_basis についての行列表現を戻す. [GM2016] の Cor 6.3. @@ -759,6 +767,7 @@ ChangeLog @item a_i と分割表の周辺和を見るには, 関数 marginaltoAlpha([行和,列和]) を用いる. @item pfaffian_basis は [GM2016] の4章のベクトル F に対応する偏微分を戻す. +@item optional 引数 arule, xrule で a_i や x_i_j を数にしたものをより効率的に求めることができる. 変化をうけるパラメータを数にしてしまっても特にエラー表示はしない. a_0 で和の条件を調整しているので注意(Todo, double check). @end itemize @comment --- @example〜@end example は実行例の表示 --- @@ -781,6 +790,14 @@ f() redefined. [ f(x_1_1,x_1_2) ] [ (f{1,0}(x_1_1,x_1_2)*x_1_1)/(a_2) ] [ (f{0,1}(x_1_1,x_1_2)*x_1_2)/(a_3) ] + +[2235] RuleA=[[a_2,1/3],[a_3,1/2]]$ RuleX=[[x_1_1,1/5]]$ + base_replace(gtt_ekn.upAlpha(1,1,1),append(RuleA,RuleX)) + -gtt_ekn.upAlpha(1,1,1 | arule=RuleA, xrule=RuleX); + +[ 0 0 ] +[ 0 0 ] + @end example @@ -868,21 +885,30 @@ ChangeLog @comment --- 個々の関数の説明の開始 --- @comment --- section 名を正確に --- @node gtt_ekn.set_debug_level,,, 超幾何関数E(k,n) +@node gtt_ekn.contiguity_mat_list_2,,, 超幾何関数E(k,n) @node gtt_ekn.show_path,,, 超幾何関数E(k,n) +@node gtt_ekn.get_svalue,,, 超幾何関数E(k,n) @node gtt_ekn.assert1,,, 超幾何関数E(k,n) @node gtt_ekn.assert2,,, 超幾何関数E(k,n) -@subsection @code{gtt_ekn.set_debug_level}, @code{gtt_ekn.show_path}, @code{gtt_ekn.assert1}, @code{gtt_ekn.assert2} +@node gtt_ekn.prob1,,, 超幾何関数E(k,n) +@subsection @code{gtt_ekn.set_debug_level}, @code{gtt_ekn.show_path}, @code{gtt_ekn.get_svalue}, @code{gtt_ekn.assert1}, @code{gtt_ekn.assert2}, @code{gtt_ekn.prob1} @comment --- 索引用キーワード @findex gtt_ekn.set_debug_level +@findex gtt_ekn.contiguity_mat_list_2 @findex gtt_ekn.show_path +@findex gtt_ekn.get_svalue @findex gtt_ekn.assert1 @findex gtt_ekn.assert2 +@findex gtt_ekn.prob1 @table @t @item gtt_ekn.set_debug_level(@var{m}) debug メッセージのレベルを設定. +@item gtt_ekn.contiguity_mat_list_2 使用する contiguity を構成. @item gtt_ekn.show_path() どのように contiguity を適用したかの情報. +@item gtt_ekn.get_svalue() static 変数の値を得る. @item gtt_ekn.assert1(@var{N}) 2x2 分割表で動作チェック. @item gtt_ekn.assert2(@var{N}) 3x3 分割表で動作チェック. +@item gtt_ekn.prob1(@var{R1},@var{R2},@var{Size}) R1 x R2 分割表用のテストデータを作る. :: @end table @@ -896,9 +922,10 @@ ChangeLog @comment --- @bullet は黒点付き --- @itemize @bullet @item (@var{m} & 0x1) == 0x1 の時 g_mat_fac_test_plain と g_mat_fac_itor の両方を呼び出し値を比較する (gtt_ekn.setup した状態で). -@item (@var{m} & 0x2) == 0x2 の時 g_mat_fac_itor への引数を tmp-input.ab として保存. +@item (@var{m} & 0x2) == 0x2 の時 g_mat_fac_test への引数を tmp-input-数.ab として保存. @item (@var{m} & 0x4) == 0x4 の時 matrix factorial の計算の呼び出し引数を表示. @item @var{N} は問題の周辺和のサイズ. +@item @code{get_svalue} の戻り値は @code{[Ekn_plist,Ekn_IDL,Ekn_debug,Ekn_mesg,XRule,ARule,Verbose,Ekn_Rq]} の値. @end itemize @comment --- @example〜@end example は実行例の表示 --- @@ -937,6 +964,15 @@ A=gtt_ekn.marginaltoAlpha_list([[400,410,1011],[910,41 [ 2 1 5 4 3 ] @end example +例. 値を計算せずに path のみ求めたい場合. +gtt_ekn3 による新しいアルゴリズムによる path の表示. +@example +A=gtt_ekn3.marginaltoAlpha_list([[10,20],[15,15]])$ +[2666] gtt_ekn3.contiguity_mat_list_3(A,1,1 | xrule=[[x_1_1,1/2]])$ +[t,[[ (-t-43/2)/(t-2) (-15/2)/(t-2) ] +[ 1/2 -1/2 ],-9]] +@end example + 例. 0 が戻れば g_mat_fac_plain と指定した計算方法の結果が一致したことがわかる. option を書かないと g_mat_fac_int との比較となる. @example @@ -967,6 +1003,14 @@ Try [[crt,1]] @end example なお二番目の例の timing (total) [例では省略] は mod 計算を subprocess がやっているので正しい値ではない. real time が計算時間の目安になる. +例. +@example +[9054] L=gtt_ekn.prob1(3,5,10 | factor=1, factor_row=3); +[[[10,20,420],[30,60,90,120,150]],[[1,1/2,1/3,1/5,1/7],[1,1/11,1/13,1/17,1/19],[1,1,1,1,1]]] +[9055] number_eval(gtt_ekn.expectation(L[0],L[1])); +[ 0.434161208918863 ... snip ] +@end example + @comment --- 参照(リンク)を書く --- @table @t @item 参照 @@ -1089,6 +1133,99 @@ ChangeLog 関連ファイルは gtt_ekn/g_mat_fac.rr gtt_ekn/childprocess.rr +@end itemize + +@node binary splitting,,, 2元分割表HGMの関数 +@chapter binary splitting + +@menu +* gtt_ekn3.init_dm_bsplit:: +* gtt_ekn3.setup_dm_bsplit:: +* gtt_ekn3.init_bsplit:: +@end menu + +@node matrix factorial,,, binary splitting +@section matrix factorial + +@comment ********************************************************** +@comment --- ◯◯◯◯ の説明 +@comment --- 個々の関数の説明の開始 --- +@comment --- section 名を正確に --- +@node gtt_ekn3.init_bsplit,,, +@node gtt_ekn3.init_dm_bsplit,,, +@node gtt_ekn3.setup_dm_bsplit,,, +@subsection @code{gtt_ekn3.init_bsplit, gtt_ekn3.init_dm_bsplit, gtt_ekn3.setup_dm_bsplit} +@comment --- 索引用キーワード +@findex gtt_ekn3.init_dm_bsplit matrix factorial +@findex gtt_ekn3.setup_dm_bsplit matrix factorial +@findex gtt_ekn3.init_bsplit matrix factorial + +@table @t +@item gtt_ekn3.init_bsplit(|minsize=16,levelmax=1); +:: binary split の実行のためのパラメータを設定する. +@item gtt_ekn3.init_dm_bsplit(|bsplit_x=0, bsplit_reduce=0) +:: binary split の分散実行のためのパラメータを設定する. +@item gtt_ekn3.setup_dm_bsplit(C) +:: binary split の分散実行のために C 個のプロセスを立ち上げる. +@end table + +@comment --- 引数の簡単な説明 --- 以下まだ書いてない. +@table @var +@item C はlevelmax-1 に設定する. 特に levalmax=1 のときは分散計算を行わない. +@item bsplit_x=1 のとき, debug 用に各プロセスを xterm で表示. +@end table + +@comment --- ここで関数の詳しい説明 --- +@comment --- @itemize〜@end itemize は箇条書き --- +@comment --- @bullet は黒点付き --- +@itemize @bullet +@item expectation などの関数に bs=1 オプションを与えると matrix factorial を binary +splitting method で計算する. +@end itemize + +@comment --- @example〜@end example は実行例の表示 --- +例: bs=1 と無い場合の比較. +@example +[4618] cputime(1)$ +[4619] gtt_ekn3.expectation(Marginal=[[1950,2550,5295],[1350,1785,6660]], + P=[[17/100,1,10],[7/50,1,33/10],[1,1,1]]|bs=1)$ +4.912sec(4.914sec) +[4621] V2=gtt_ekn3.expectation(Marginal=[[1950,2550,5295],[1350,1785,6660]], + P=[[17/100,1,10],[7/50,1,33/10],[1,1,1]])$ +6.752sec(6.756sec) +@end example + + +@comment --- @example〜@end example は実行例の表示 --- +例: 分散計算する場合. +分散計算はかえって遅くなる場合が多いので注意. +下記の例での bsplit_x=1 option は +debug windows を開くのでさらに遅くなる. +gtt_ekn3.test_bs_dist(); でもテストできる. +@example +[3669] C=4$ gtt_ekn3.init_bsplit(|minsize=16,levelmax=C+1)$ gtt_ekn3.init_dm_bsplit(|bsplit_x=1)$ +[3670] [3671] [3672] gtt_ekn3.setup_dm_bsplit(C); +[0,0] +[3673] gtt_ekn3.assert2(10|bs=1)$ +@end example + +@comment --- 参照(リンク)を書く --- +@table @t +@item 参照 +@ref{gtt_ekn3.gmvector} +@ref{gtt_ekn3.expectation} +@ref{gtt_ekn3.assert1} +@ref{gtt_ekn3.assert2} +@end table + +@comment --- ChangeLog を書く. ソースコードの位置. 変更日時 など CVSサーバを見るため +@noindent +ChangeLog +@itemize @bullet +@item + 関連ファイルは + gtt_ekn3/mfac_bs.rr + gtt_ekn3/dm_bsplit.rr @end itemize