=================================================================== RCS file: /home/cvs/OpenXM/src/asir-contrib/packages/doc/mt_gkz/mt_gkz-en.texi,v retrieving revision 1.5 retrieving revision 1.6 diff -u -p -r1.5 -r1.6 --- OpenXM/src/asir-contrib/packages/doc/mt_gkz/mt_gkz-en.texi 2021/10/27 06:13:24 1.5 +++ OpenXM/src/asir-contrib/packages/doc/mt_gkz/mt_gkz-en.texi 2021/12/11 11:40:45 1.6 @@ -1,4 +1,4 @@ -%% $OpenXM: OpenXM/src/asir-contrib/packages/doc/mt_gkz/mt_gkz-en.texi,v 1.4 2021/03/29 05:08:01 takayama Exp $ +%% $OpenXM: OpenXM/src/asir-contrib/packages/doc/mt_gkz/mt_gkz-en.texi,v 1.5 2021/10/27 06:13:24 takayama Exp $ %% xetex mt_gkz-en.texi (.texi までつける. ) %% @math{tex形式の数式} %% 参考: http://www.fan.gr.jp/~ring/doc/texinfo/texinfo-ja_14.html#SEC183 @@ -38,7 +38,7 @@ @title GKZ hypergeometric system @subtitle Pfaffian system (Pfaff equation), contiguity relations, cohomology intersection @subtitle Version 1.0 -@subtitle January 20, 2021 +@subtitle December 21, 2021 @author by S-J. Matsubara-Heo, N.Takayama @page @@ -123,6 +123,8 @@ systems, Linear Algebra and its Applications (LAA), 42 * mt_gkz.ff1:: * mt_gkz.ff2:: * mt_gkz.rvec_to_fvec:: +* mt_gkz.fvec_to_conn_mat:: +* mt_gkz.contiguity:: @end menu @node Pfaff equation for given cocycles,,, Pfaff equation @@ -152,7 +154,7 @@ the parameter vector of the GKZ system. @item Ap See [MT2020]. @item Rvec -It is used to specify a basis of cocycles. See [MT2020] +It is used to specify a basis of cocycles as explained below. See also [MT2020]. @item DirX a list of dxi's. @end table @@ -169,6 +171,9 @@ the set of the cocycles standing for Av_1, Av_2, ..., (see [MT2020]) is supposed to be the basis to construct the Pfaffian system. +The exponents @math{(q_\ell, q)} of the integral representation +@math{\int \prod h_\ell^{-q_\ell} x^q {{dx} \over {x}}} +is shifted by Av_i@math{=:A_{v_i}} as @math{(q_\ell,q)+A_{v_i}}. Let a_1, a_2, ..., a_n be the column vectors of the matrix A and v be a column vector (x_1, x_2, ..., x_n)^T. Av is defined as a_1 x_1 + a_2 x_2 + ... + a_n x_n. @@ -558,6 +563,55 @@ obtains connection matrices. @table @t @item Refer to @ref{mt_gkz.pfaff_eq} +@end table +@comment おわり. + +@comment --- contiguity +@comment --- section 名を正確に --- +@node mt_gkz.contiguity,,, Pfaff equation for given cocycles +@subsection @code{mt_gkz.contiguity} +@comment --- 索引用キーワード +@findex mt_gkz.contiguity + +@table @t +@item mt_gkz.contiguity(@var{A},@var{Beta},@var{Ap},@var{Rvec1},@var{Rvec2}) +:: It returns the coefficient matrix P that satisfies +@var{Rvec1} = P @var{Rvec2}. +@end table + +@comment --- 引数の簡単な説明 --- +@table @var +@item return +The coefficient matrix P that satisfies @var{Rvec1} = P @var{Rvec2}. +@item A Beta Ap Rvec1 Rvec2 +Same with @ref{mt_gkz.pfaff_eq}. +@end table + +@comment --- ここで関数の詳しい説明 --- +@comment --- @itemize〜@end itemize は箇条書き --- +@comment --- @bullet は黒点付き --- +@itemize @bullet +@item +It returns the contiguity relation between +@var{Rvec1} and @var{Rvec2} +@end itemize + +@comment --- @example〜@end example は実行例の表示 --- +Example: +@example +[1883] import("mt_gkz.rr"); +[3200] PP=mt_gkz.contiguity(A=[[1,1,0,0],[0,0,1,1],[0,1,0,1]], + Beta=[-g1,-g2,-c], + Ap = [[1,1,0,0],[0,0,1,1],[0,0,0,0]], + Rvec1 = [[1,0,0,0],[0,0,1,0]], + Rvec2 = [[0,0,1,0],[1,0,0,0]]); +@end example + +@comment --- 参照(リンク)を書く --- +@table @t +@item Refer to +@ref{mt_gkz.pfaff_eq} +@ref{mt_gkz.fvec_to_conn_mat} @end table @comment おわり.