[BACK]Return to mt_gkz-en.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-contrib / packages / doc / mt_gkz

Annotation of OpenXM/src/asir-contrib/packages/doc/mt_gkz/mt_gkz-en.texi, Revision 1.7

1.7     ! takayama    1: %% $OpenXM: OpenXM/src/asir-contrib/packages/doc/mt_gkz/mt_gkz-en.texi,v 1.6 2021/12/11 11:40:45 takayama Exp $
1.1       takayama    2: %% xetex mt_gkz-en.texi   (.texi までつける. )
                      3: %% @math{tex形式の数式}
                      4: %% 参考: http://www.fan.gr.jp/~ring/doc/texinfo/texinfo-ja_14.html#SEC183
                      5: %% @tex{tex形式で書いたもの}
                      6: %%https://www.gnu.org/software/texinfo/manual/texinfo/html_node/_0040TeX-_0040LaTeX.html
                      7:
                      8: %% 英語版, 以下コメントは @comment で始める.  \input texinfo 以降は普通の tex 命令は使えない.
                      9: \input texinfo-ja
                     10: @iftex
                     11: @catcode`@#=6
                     12: @def@fref#1{@xrefX[#1,,@code{#1},,,]}
                     13: @def@b#1{{@bf #1}}
                     14: @catcode`@#=@other
                     15: @end iftex
                     16: @overfullrule=0pt
                     17: @documentlanguage en
                     18: @c -*-texinfo-*-
                     19: @comment --- おまじない終り ---
                     20:
                     21: @comment --- GNU info ファイルの名前 ---
1.4       takayama   22: @setfilename asir-contrib-mt_gkz_man
1.1       takayama   23:
                     24: @comment --- タイトル ---
                     25: @settitle GKZ hypergeometric system
                     26:
                     27: @comment --- おまじない ---
                     28: @ifinfo
                     29: @macro fref{name}
                     30: @ref{\name\,,@code{\name\}}
                     31: @end macro
                     32: @end ifinfo
                     33:
                     34: @titlepage
                     35: @comment --- おまじない終り ---
                     36:
                     37: @comment --- タイトル, バージョン, 著者名, 著作権表示 ---
                     38: @title GKZ hypergeometric system
                     39: @subtitle Pfaffian system (Pfaff equation), contiguity relations, cohomology intersection
                     40: @subtitle Version 1.0
1.6       takayama   41: @subtitle December 21, 2021
1.1       takayama   42:
                     43: @author  by S-J. Matsubara-Heo, N.Takayama
                     44: @page
                     45: @vskip 0pt plus 1filll
                     46: Copyright @copyright{} Risa/Asir committers
                     47: 2004--2020. All rights reserved.
                     48: @end titlepage
                     49:
                     50: @comment --- おまじない ---
                     51: @synindex vr fn
                     52: @comment --- おまじない終り ---
                     53:
                     54: @comment --- @node は GNU info, HTML 用 ---
                     55: @comment --- @node  の引数は node-name,  next,  previous,  up ---
                     56: @node Top,, (dir), (dir)
                     57:
                     58: @comment --- @menu は GNU info, HTML 用 ---
                     59: @comment --- chapter 名を正確に並べる ---
                     60:
                     61: @menu
                     62: * About this document::
                     63: * Pfaff equation::
                     64: * b function::
                     65: * Utilities::
                     66: * Index::
                     67: @end menu
                     68:
                     69: @comment --- chapter の開始 ---
                     70: @comment --- 親 chapter 名を正確に. 親がない場合は Top ---
                     71: @node About this document,,, Top
                     72: @chapter About this document
                     73:
                     74: This document explains Risa/Asir functions for GKZ hypergeometric system
                     75: (A-hypergeometric system). @*    @comment 強制改行
                     76: Loading the package:
                     77: @example
                     78: import("mt_gkz.rr");
                     79: @end example
                     80: @noindent
                     81: References cited in this document.
                     82: @itemize @bullet
                     83: @item [MT2020]
                     84: Saiei-Jaeyeong Matsubara-Heo, Nobuki Takayama,
                     85: Algorithms for Pfaffian Systems and Cohomology Intersection Numbers of Hypergeometric Integrals,
                     86: Lecture Notes in Computer Science 12097 (2020), 73--84.
                     87: Errata is posted on @uref{http://arxiv.org/abs/???}.
                     88: E-attachments can be obtainable at
                     89: @uref{http://www.math.kobe-u.ac.jp/OpenXM/Math/intersection2}
                     90: @item [GM2020]
                     91: Yoshiaki Goto, Saiei-Jaeyeong Matsubara-Heo,
                     92: Homology and cohomology intersection numbers of GKZ systems, arXiv:2006.07848
                     93: @item [SST1999]
                     94: M.Saito, B.Sturmfels, N.Takayama, Hypergeometric polynomials
                     95: and integer programming, Compositio Mathematica, 155 (1999), 185--204
                     96: @item [SST2000]
                     97: M.Saito, B.Sturmfels, N.Takayama, Groebner Deformations of Hypergeometric
                     98: Differential Equations. Springer, 2000.
                     99: @end itemize
                    100:
                    101: References for maple packages IntegrableConnections and OreMorphisms.
                    102: @itemize @bullet
                    103: @item [BCEW]
                    104: M.Barkatou, T.Cluzeau, C.El Bacha, J.-A.Weil,
                    105: IntegrableConnections – a maple package for computing closed form solutions of integrable connections
                    106: (2012). @uref{https://www.unilim.fr/pages perso/thomas.cluzeau/Packages/IntegrableConnections/PDS.html}
                    107: @item [CQ]
                    108: T.Cluzeau and A.Quadrat,
                    109: OreMorphisms: A homological algebraic package for factoring, reducing and decomposing linear functional systems (2009). @uref{https://who.rocq.inria.fr/Alban.Quadrat/OreMorphisms/index.html}
                    110: @item [CQ08]
                    111: T.Cluzeau, A.Quadrat, Factoring and decomposing a class of linear functional
                    112: systems, Linear Algebra and its Applications (LAA), 428(1): 324-381, 2008.
                    113: @end itemize
                    114:
                    115:
                    116:
                    117: @node Pfaff equation,,, Top
                    118: @chapter Pfaff equation
                    119:
                    120: @menu
                    121: * mt_gkz.pfaff_eq::
                    122: * mt_gkz.ff::
                    123: * mt_gkz.ff1::
                    124: * mt_gkz.ff2::
                    125: * mt_gkz.rvec_to_fvec::
1.6       takayama  126: * mt_gkz.fvec_to_conn_mat::
                    127: * mt_gkz.contiguity::
1.1       takayama  128: @end menu
                    129:
                    130: @node Pfaff equation for given cocycles,,, Pfaff equation
                    131: @section Pfaff equation for given cocycles
                    132:
                    133: @comment **********************************************************
                    134: @comment --- 関数 pfaff_eq
                    135: @node mt_gkz.pfaff_eq,,, Pfaff equation for given cocycles
                    136: @subsection @code{mt_gkz.pfaff_eq}
                    137: @comment --- 索引用キーワード
                    138: @findex mt_gkz.pfaff_eq
1.5       takayama  139: @findex mt_gkz.use_hilbert_driven
1.1       takayama  140:
                    141: @table @t
                    142: @item mt_gkz.pfaff_eq(@var{A},@var{Beta},@var{Ap},@var{Rvec},@var{DirX})
                    143: :: It returns the Pfaff equation for the GKZ system defined by @var{A} and @var{Beta} with respect to cocycles defined by @var{Rvec}.
                    144: @end table
                    145:
                    146: @comment --- 引数の簡単な説明 ---
                    147: @table @var
                    148: @item return
                    149: a list of coefficients of the Pfaff equation with respect to the direction @var{DirX}
                    150: @item A
                    151: the matrix A of the GKZ system.
                    152: @item Beta
                    153: the parameter vector of the GKZ system.
                    154: @item Ap
                    155: See [MT2020].
                    156: @item Rvec
1.6       takayama  157: It is used to specify a basis of cocycles as explained below. See also [MT2020].
1.1       takayama  158: @item DirX
                    159: a list of dxi's.
                    160: @end table
                    161:
                    162: @comment --- ここで関数の詳しい説明 ---
                    163: @comment --- @itemize〜@end itemize は箇条書き ---
                    164: @comment --- @bullet は黒点付き ---
                    165: @itemize @bullet
                    166: @item
                    167: The independent variables are x1, x2, x3, ...
                    168: @item
                    169: When @var{Rvec}=[v_1, v_2, ..., v_r] where r is the rank of the GKZ system,
                    170: the set of the cocycles standing for Av_1, Av_2, ..., Av_r
                    171: (see [MT2020])
                    172: is supposed
                    173: to be the basis to construct the Pfaffian system.
1.6       takayama  174: The exponents @math{(q_\ell, q)} of the integral representation
                    175: @math{\int \prod h_\ell^{-q_\ell} x^q {{dx} \over {x}}}
                    176: is shifted by Av_i@math{=:A_{v_i}} as @math{(q_\ell,q)+A_{v_i}}.
1.1       takayama  177: Let a_1, a_2, ..., a_n be the column vectors of the matrix A
                    178: and v be a column vector (x_1, x_2, ..., x_n)^T.
                    179: Av is defined as a_1 x_1 + a_2 x_2 + ... + a_n x_n.
                    180: @item
                    181: When the columns of @var{A} are expressed as
                    182: @math{e_i \otimes \alpha_{i_j}},
                    183: the columns of @var{Ap} is
                    184: @math{e_i \otimes 0} where $e_i$ is the i-th unit vector.
                    185: See [MT2020] on the definition of @var{Ap}.
                    186: Here are some examples.
                    187: When @var{A} is
                    188: @verbatim
                    189: [[1,1,0,0],
                    190:  [0,0,1,1],
                    191:  [0,1,0,1]]
                    192: @end verbatim
                    193: @var{Ap} is
                    194: @verbatim
                    195: [[1,1,0,0],
                    196:  [0,0,1,1],
                    197:  [0,0,0,0]] <-- zero row
                    198: @end verbatim
                    199: When @var{A} is
                    200: @verbatim
                    201: [[1,1,1,0,0,0],
                    202:  [0,0,0,1,1,1],
                    203:  [0,1,0,0,1,0],
                    204:  [0,0,1,0,0,1]
                    205: ]
                    206: @end verbatim
                    207: @var{Ap} is
                    208: @verbatim
                    209: [[1,1,1,0,0,0],
                    210:  [0,0,0,1,1,1],
                    211:  [0,0,0,0,0,0], <-- zero row
                    212:  [0,0,0,0,0,0]  <-- zero row
                    213: ]
                    214: @end verbatim
                    215: See also page 223 of [SST2000].
                    216: @item
                    217: Option @var{xrule}. When the option @var{xrule} is given,
                    218: the x variables specified by this option are specialized to numbers.
                    219: @item
                    220: Option @var{shift}. When the matrix @var{A} is not normal
                    221: (the associated toric ideal is not normal), a proper shift vector
                    222: must be given to obtain an element of the b-ideal. Or, use the option
                    223: @var{b_ideal} below. See [SST1999] on the theory.
                    224: @item
                    225: Option @var{b_ideal}. When the matrix @var{A} is not normal,
                    226: the option @code{b_ideal=1} obtains b-ideals and the first element
                    227: of each b-ideal is used as the b-function. The option @var{shift}
                    228: is ignored.
                    229: @item
                    230: Option @var{cg}. A constant matrix given by this option is used
                    231: for the Gauge transformation of the Pfaffian system.
                    232: In other words, the basis of cocycles specified by @var{Rvec}
                    233: is transformed by the constant matrix given by this option.
1.5       takayama  234: @item
                    235: By mt_gkz.use_hilbert_driven(Rank), the rank of the GKZ system is assumed to be
                    236: Rank. It makes the computation of Groebner basis by yang.rr faster.
                    237: This option is disabled by mt_gkz.use_hilbert_driven(0);
1.1       takayama  238: @end itemize
                    239:
                    240: @comment --- @example〜@end example は実行例の表示 ---
                    241: Example: Gauss hypergeometric system, see [GM2020] example ??.
                    242: @example
                    243: [1883] import("mt_gkz.rr");
                    244: [2657] PP=mt_gkz.pfaff_eq(A=[[1,1,0,0],[0,0,1,1],[0,1,0,1]],
                    245:              Beta=[-g1,-g2,-c],
                    246:              Ap = [[1,1,0,0],[0,0,1,1],[0,0,0,0]],
                    247:              Rvec = [[1,0,0,0],[0,0,1,0]],
                    248:              DirX=[dx4,dx3] | xrule=[[x1,1],[x2,1]],
                    249:              cg=matrix_list_to_matrix([[1,0],[-1,1]]))$
                    250:
                    251: Bfunctions=[s_1*s_2-s_1*s_3+s_1^2,s_1*s_3,s_2^2+(-s_3+s_1)*s_2,s_3*s_2]
                    252: -- snip --
                    253: [2658] PP[0];
                    254: [ (g2*x3-g2)/(x4-x3) (g2*x3)/(x4-x3) ]
                    255: [ ((-g2*x3-c+g2)*x4+(c-g1)*x3+g1)/(x4^2-x3*x4)
                    256:            ((-g2*x3-c)*x4+(c-g1)*x3)/(x4^2-x3*x4) ]
                    257: [2659] PP[1];
                    258: [ (-g2*x4+g2)/(x4-x3) (-g2*x4)/(x4-x3) ]
                    259: [ ((g2*x3+c-g2-1)*x4+(-c+g1+1)*x3-g1)/(x3*x4-x3^2)
                    260:      ((g2*x3+c-g2-1)*x4+(-c+g1+g2+1)*x3)/(x3*x4-x3^2) ]
                    261: @end example
                    262:
                    263: @*
                    264:
                    265: Example: The role of shift.
                    266: When the toric ideal is not normal, a proper shift vector
                    267: must be given with the option @code{shift} to find an element of the b-ideal.
                    268: @example
                    269: [1882] load("mt_gkz.rr");
                    270: [1883] A=[[1,1,1,1],[0,1,3,4]];
                    271:   [[1,1,1,1],[0,1,3,4]]
                    272: [1884] Ap=[[1,1,1,1],[0,0,0,0]];
                    273:   [[1,1,1,1],[0,0,0,0]]
                    274: [1885] Rvec=[[0,0,0,0],[0,0,1,0],[0,0,0,1],[0,0,0,2]];
                    275:   [[0,0,0,0],[0,0,1,0],[0,0,0,1],[0,0,0,2]];
                    276: [2674] P=mt_gkz.pfaff_eq(A,[b1,b2],Ap,Rvec,DirX=[dx4]
                    277:     | xrule=[[x1,1],[x2,2],[x3,4]] )$
                    278: dx remains
                    279: stopped in step_up at line 342 in file "./mt_gkz/saito-b.rr"
                    280: 342    if (type(dn(Ans)) > 1) error("dx remains");
                    281: (debug) quit
                    282: // Since the toric ideal for A is not normal, it stops with the error.
                    283: [2675]  P=mt_gkz.pfaff_eq(A,[b1,b2],Ap,Rvec,DirX=[dx4]
                    284:    | shift=[1,0],xrule=[[x1,1],[x2,2],[x3,4]])$
                    285: // It works.
                    286: @end example
                    287:
                    288: @comment --- 参照(リンク)を書く ---
                    289: @table @t
                    290: @item Refer to
                    291: @ref{mt_gkz.ff1}
                    292: @ref{mt_gkz.ff2}
                    293: @ref{mt_gkz.ff}
                    294: @ref{mt_gkz.rvec_to_fvec}
                    295: @end table
                    296: @comment mt_gkz.pfaff_eq の説明おわり. あとはこれの繰り返し.
                    297:
                    298:
                    299: @comment --- 個々の関数の説明 ---
                    300: @comment --- section 名を正確に ---
                    301: @node mt_gkz.ff2,,, Pfaff equation for given cocycles
                    302: @node mt_gkz.ff1,,, Pfaff equation for given cocycles
                    303: @node mt_gkz.ff,,, Pfaff equation for given cocycles
                    304: @subsection @code{mt_gkz.ff2}, @code{mt_gkz.ff1}, @code{mt_gkz.ff}
                    305: @comment --- 索引用キーワード
                    306: @findex mt_gkz.ff2
                    307: @findex mt_gkz.ff1
                    308: @findex mt_gkz.ff
                    309:
                    310: @table @t
1.7     ! takayama  311: @item mt_gkz.ff(@var{Rvec0},@var{A},@var{Ap},@var{Beta})
1.1       takayama  312: @item mt_gkz.ff1(@var{Rvec0},@var{A},@var{Beta},@var{Ap})
                    313: @item mt_gkz.ff2(@var{Rvec0},@var{A},@var{Beta},@var{Ap},@var{BF},@var{C})
                    314: :: @code{ff} returns a differential operator whose action to 1 gives
                    315: the cocycle defined by @var{Rvec0}
                    316: @end table
                    317:
                    318: @comment --- 引数の簡単な説明 ---
                    319: @table @var
                    320: @item return
                    321: @code{ff} returns a differential operator whose action to 1 of @math{M_A(\beta)}
                    322: gives the cocycle defined by @var{Rvec0}.
                    323: @item return
                    324: @code{ff1} returns a composite of step-down operators for the positive part
                    325: of @var{Rvec0}
                    326: @item return
                    327: @code{ff2} returns a composite of step-up operators for the positive part
                    328: of @var{Rvec0}
                    329: @item Rvec0
                    330: An element of @var{Rvec} explained in @ref{mt_gkz.pfaff_eq}.
                    331: @item BF
                    332: the list of b-functions to all directions.
                    333: @item C
                    334: the list of the step up operators for all a_1, a_2, ..., a_n.
                    335: @end table
                    336: Other arguments are same with those of @code{pfaff_eq}.
                    337:
                    338: @comment --- ここで関数の詳しい説明 ---
                    339: @comment --- @itemize〜@end itemize は箇条書き ---
                    340: @comment --- @bullet は黒点付き ---
                    341: @itemize @bullet
                    342: @item
                    343: The function @code{ff} generates the list of b-functions and the list of
                    344: step up operators and store them in the cache variable.
                    345: They can be obtained by calling as @code{S=mt_gkz.get_bf_step_up()}
                    346: where S[0] is the list of b-functions and S[1] is the list of step up
                    347: operators.
                    348: Step up operators are obtained by the algorithm given in [SST1999].
                    349: @item
                    350: Option nf. When nf=1, the output operator is reduced to the normal form
                    351: with respect to the Groebner basis of the GKZ system of the graded reverse
                    352: lexicographic order.
                    353: @item
                    354: Option shift. See @ref{mt_gkz.pfaff_eq}.
                    355: @item
                    356: Internal info: The function @code{mt_gkz.bb} gives the constant so that
                    357: the step up and step down operators (contiguity operators) give
                    358: contiguity relations for the integral representation in [MT2020].
                    359: Note that @code{mt_gkz.ff1} and @code{mt_gkz.ff2} give contiguity
                    360: relations which are constant multiple of those for hypergeometric
                    361: polynomials.
                    362: @item
                    363: Internal info: @code{mt_gkz.step_up} generates step up operators
                    364: of [SST1999] from b-functions by utilizing @code{mt_gkz.bf2euler}
                    365: and @code{mt_gkz.toric}.
                    366: @end itemize
                    367:
                    368: @comment --- @example〜@end example は実行例の表示 ---
                    369: Example: Step up operators compatible with the integral representation in [MT2020].
                    370: The function hgpoly_res defined in @code{check-by-hgpoly.rr} returns
                    371: a multiple of the hypergeometric polynomial which agrees with
                    372: the residue times a power of @math{2\pi \sqrt{-1}}
                    373: of the integral representation.
                    374: See [SST1999].
                    375: @example
                    376: [1883] import("mt_gkz.rr")$
                    377: [3175] load("mt_gkz/check-by-hgpoly.rr")$
                    378: [3176]  A=[[1,1,0,0],[0,0,1,1],[0,1,0,1]]$
                    379: [3177]  B=newvect(3,[5,4,7])$ Ap=[[1,1,0,0],[0,0,1,1],[0,0,0,0]]$
                    380: [3179]  Beta=[b1,b2,b3]$  R=[0,0,-1,0]$
                    381: [3180]  F2=hgpoly_res(A,B,2);  // HG polynomial. 2 is the number of e_i's.
                    382:   10*x1^2*x2^3*x4^4+20*x1*x2^4*x3*x4^3+6*x2^5*x3^2*x4^2
                    383: [3182]  mt_gkz.ff(R,A,Ap,Beta); // the operator standing for R
                    384:   (x3*x4*dx4+x3^2*dx3+x1*x4*dx2+x1*x3*dx1+x3)/(b1+b2-b3+1)
                    385: [3184] S=mt_gkz.get_bf_step_up(A); // b-function and non-reduced step up op's
                    386:   [[ s_1*s_2-s_1*s_3+s_1^2 s_1*s_3 s_2^2+(-s_3+s_1)*s_2 s_3*s_2 ],
                    387:   [ x2*x3*dx4+x1*x3*dx3+x1*x2*dx2+x1^2*dx1+x1
                    388:     x2*x4*dx4+x1*x4*dx3+x2^2*dx2+x1*x2*dx1+x2
                    389:     x3*x4*dx4+x3^2*dx3+x1*x4*dx2+x1*x3*dx1+x3
                    390:     x4^2*dx4+x3*x4*dx3+x2*x4*dx2+x2*x3*dx1+x4 ]]
                    391: [3185] Fvec=mt_gkz.ff2(R,A,Beta,Ap,S[0],S[1]);
                    392:   (x3*x4*dx4+x3^2*dx3+x1*x4*dx2+x1*x3*dx1+x3)/(b1+b2-b3+1)
                    393: [3188] Fvec = base_replace(Fvec,assoc(Beta,vtol(B)));
                    394:   1/3*x3*x4*dx4+1/3*x3^2*dx3+1/3*x1*x4*dx2+1/3*x1*x3*dx1+1/3*x3
                    395: [3189] R32d = odiff_act(Fvec,F2,[x1,x2,x3,x4]); // Act Fvec to the hg-poly
                    396:   10*x1^3*x2^2*x4^5+50*x1^2*x2^3*x3*x4^4+50*x1*x2^4*x3^2*x4^3+10*x2^5*x3^3*x4^2
                    397: [3190] red(R32d/hgpoly_res(A,B+newvect(3,[0,1,0]),2));
                    398:    // R32d agrees with the HG polynomial with Beta=[5,4,7]+[0,1,0].
                    399: 1
                    400: @end example
                    401:
                    402: @comment --- 参照(リンク)を書く ---
                    403: @table @t
                    404: @item Refer to
                    405: @ref{mt_gkz.pfaff_eq}
                    406: @end table
                    407: @comment おわり.
                    408:
                    409: @comment --- 個々の関数の説明 ---  Ref:2020-11-09-tw-cohom-progs.goodnotes
                    410: @comment --- section 名を正確に ---
                    411: @node mt_gkz.rvec_to_fvec,,, Pfaff equation for given cocycles
                    412: @subsection @code{mt_gkz.rvec_to_fvec}
                    413: @comment --- 索引用キーワード
                    414: @findex mt_gkz.rvec_to_fvec
                    415:
                    416: @table @t
                    417: @item mt_gkz.rvec_to_fvec(@var{Rvec},@var{A},@var{Ap},@var{Beta})
                    418: :: It returns a set of differential operators standing for @var{Rvec}.
                    419: @end table
                    420:
                    421: @comment --- 引数の簡単な説明 ---
                    422: @table @var
                    423: @item return
                    424: It returns a set of differential operators of which action to
                    425: @math{1 \in M_A(\beta)} give cocycles specified by @var{Rvec}.
                    426: @item A, Ap, Beta
                    427: Same with @ref{mt_gkz.pfaff_eq}
                    428: @end table
                    429:
                    430: @comment --- ここで関数の詳しい説明 ---
                    431: @comment --- @itemize〜@end itemize は箇条書き ---
                    432: @comment --- @bullet は黒点付き ---
                    433: @itemize @bullet
                    434: @item
                    435: Internal info: this function builds the set of operators by calling
                    436: @ref{mt_gkz.ff}.
                    437: @end itemize
                    438:
                    439: @comment --- @example〜@end example は実行例の表示 ---
                    440: Example: The following two expressions are congruent because
                    441: @math{2a_1-a_2-a_3+a_4=a_1} for this @code{A}.
                    442: @example
                    443: [1883] import("mt_gkz.rr");
                    444: [3191] mt_gkz.rvec_to_fvec([[2,-1,-1,1],[0,0,1,0]],
                    445:  [[1,1,0,0],[0,0,1,1],[0,1,0,1]],
                    446:  [[1,1,0,0],[0,0,1,1],[0,0,0,0]],[b1,b2,b3]);
                    447: [(x2*x3*x4^2*dx1^2*dx4^3+((x1*x3*x4^2+x2*x3^2*x4)*dx1^2*dx3
                    448:  +(x1*x2*x4^2+x2^2*x3*x4)*dx1^2*dx2+(x1^2*x4^2+2*x1*x2*x3*x4+x2^2*x3^2)*dx1^3
                    449:  +(x1*x4^2+3*x2*x3*x4)*dx1^2)*dx4^2+(x1*x3^2*x4*dx1^2*dx3^2
                    450:  +((x1^2*x3*x4+x1*x2*x3^2)*dx1^3+(3*x1*x3*x4+x2*x3^2)*dx1^2)*dx3
                    451:  +x1*x2^2*x4*dx1^2*dx2^2+((x1^2*x2*x4+x1*x2^2*x3)*dx1^3
                    452:  +(3*x1*x2*x4+x2^2*x3)*dx1^2)*dx2+x1^2*x2*x3*dx1^4
                    453:  +(x1^2*x4+3*x1*x2*x3)*dx1^3+(x1*x4+x2*x3)*dx1^2)*dx4)
                    454:  /(b3*b2*b1^3+(b3*b2^2+(-b3^2-2*b3)*b2)*b1^2+(-b3*b2^2+(b3^2+b3)*b2)*b1),
                    455:  (dx3)/(b2)]
                    456: [3192] mt_gkz.rvec_to_fvec([[1,0,0,0],[0,0,1,0]],
                    457:    [[1,1,0,0],[0,0,1,1],[0,1,0,1]],
                    458:    [[1,1,0,0],[0,0,1,1],[0,0,0,0]],[b1,b2,b3]);
                    459: [(dx1)/(b1),(dx3)/(b2)]
                    460: @end example
                    461:
                    462: @comment --- 参照(リンク)を書く ---
                    463: @table @t
                    464: @item Refer to
                    465: @ref{mt_gkz.pfaff_eq}
                    466: @end table
                    467: @comment おわり.
                    468:
                    469: @comment --- fvec_to_conn_mat
                    470: @comment --- section 名を正確に ---
                    471: @node mt_gkz.fvec_to_conn_mat,,, Pfaff equation for given cocycles
                    472: @subsection @code{mt_gkz.fvec_to_conn_mat}
                    473: @comment --- 索引用キーワード
                    474: @findex mt_gkz.fvec_to_conn_mat
                    475:
                    476: @table @t
                    477: @item mt_gkz.fvec_to_conn_mat(@var{Fvec},@var{A},@var{Beta},@var{DirX})
                    478: :: It returns the coefficient matrices of the basis
                    479: @var{Fvec} or @var{DirX}[I]*@var{Fvec} in terms of the set of the standard basis.
                    480: @end table
                    481:
                    482: @comment --- 引数の簡単な説明 ---
                    483: @table @var
                    484: @item return
                    485: It returns the coefficient matrices of the basis
                    486: @var{Fvec} or @var{DirX}[I]*@var{Fvec} in terms of the set of the standard basis of the Groebner basis explained below.
                    487: @item A Beta
                    488: Same with @ref{mt_gkz.pfaff_eq}.
                    489: @item DirX
                    490: When @var{DirX} is 1, this function returns the matrix which expresses
                    491: @var{Fvec} in terms of the set of the standard monomials of
                    492: the Groebner basis of the GKZ system in the ring of rational function
                    493: coefficients with respect to the graded reverse lexicographic order.
                    494: In other cases, it returns the coefficient matrices of
                    495: @var{DirX}[I]'s*@var{Fvec} in terms of the set of the standard basis of the Groebner basis.
                    496: @end table
                    497:
                    498: @comment --- ここで関数の詳しい説明 ---
                    499: @comment --- @itemize〜@end itemize は箇条書き ---
                    500: @comment --- @bullet は黒点付き ---
                    501: @itemize @bullet
                    502: @item
                    503: It utilizes a Groebner basis computation by the package @code{yang.rr}
                    504: and @code{yang.reduction} to obtain connection matrices.
                    505: @item
                    506: This function calls some utility functions
                    507: @code{mt_gkz.dmul(Op1,Op2,XvarList)} (multiplication of @code{Op1} and @code{Op2}
                    508: and @code{mt_gkz.index_vars(x,Start,End | no_=1)}
                    509: which generates indexed variables without the underbar ``_''.
                    510: @item
                    511: We note here some other utility functions in this section:
                    512: @code{mt_gkz.check_compatibility(P,Q,X,Y)},
                    513: which checkes if the sytem d/dX-P, d/dY-Q is compatible.
                    514: @end itemize
                    515:
                    516: @comment --- @example〜@end example は実行例の表示 ---
                    517: Example: The following example illustrates how mt_gkz.pfaff_eq
                    518: obtains connection matrices.
                    519: @example
                    520: [1883] import("mt_gkz.rr");
                    521: [3201] V=mt_gkz.index_vars(x,1,4 | no_=1);
                    522:   [x1,x2,x3,x4]
                    523: [3202] mt_gkz.dmul(dx1,x1^2,V);
                    524:   x1^2*dx1+2*x1
                    525: [3204] A=[[1,1,0,0],[0,0,1,1],[0,1,0,1]]$
                    526:    Ap=[[1,1,0,0],[0,0,1,1],[0,0,0,0]]$
                    527:    Beta= [b1,b2,b3]$
                    528:    Rvec = [[1,0,0,0],[0,0,1,0]]$
                    529:    Fvec = mt_gkz.rvec_to_fvec(Rvec,A,Ap,Beta)$
                    530:     /* Express cocyles Rvec
                    531:        by elements Fvec in the Weyl algebra by contiguity relations. */
                    532:    Cg = matrix_list_to_matrix([[1,0],[1,-1]])$
                    533: [3208] NN=mt_gkz.fvec_to_conn_mat(Fvec,A,Beta,1);
                    534:   // Express Fvec by the standard monomials Std=NN[1].
                    535:  1 ooo 2 .ooo
                    536:   [[ (x4)/(b1*x1) (b1-b3)/(b1*x1) ]
                    537:   [ (-x4)/(b1*x2) (1)/(x3) ],[dx4,1]]
                    538: [3209] Std=NN[1];
                    539:   [dx4,1]
                    540: [3173] NN=NN[0];
                    541:   [ (x4)/(b1*x1) (b1-b3)/(b1*x1) ]
                    542:   [ (-x4)/(b2*x3) (1)/(x3) ]
                    543: [3174] NN1=mt_gkz.fvec_to_conn_mat(Fvec,A,Beta,dx1)[0];
                    544:   // Express dx1*Fvec by the standard monomials Std.
                    545:  1 ooo 2 .ooo
                    546:   [ ((2*b1+b2-b3-1)*x1*x4^2+(-b1+b3+1)*x2*x3*x4)/(b1*x1^3*x4-b1*x1^2*x2*x3)
                    547:     ((b1^2+(-2*b3-1)*b1-b3*b2+b3^2+b3)*x1*x4
                    548:      +(-b1^2+(2*b3+1)*b1-b3^2-b3)*x2*x3)/(b1*x1^3*x4-b1*x1^2*x2*x3) ]
                    549:   [(b1 (-b1*x1*x4^2-b2*x2*x3*x4)/(b2*x1^2*x3*x4-b2*x1*x2*x3^2)
                    550:    (b1*x1*x4+(-b1+b3)*x2*x3)/(x1^2*x3*x4-x1*x2*x3^2) ]
                    551: [3188] P1=map(red,Cg*NN1*matrix_inverse(NN)*matrix_inverse(Cg));
                    552:   [ ((-b2*x3+(b1+b2-b3-1)*x1)*x4+(-b1+b3+1)*x2*x3)/(x1^2*x4-x1*x2*x3)
                    553:      (b2*x3*x4)/(x1^2*x4-x1*x2*x3) ]
                    554:   [ ((-b2*x3+(b2-b3-1)*x1)*x4+(-b1+b3+1)*x2*x3+b1*x1*x2)/(x1^2*x4-x1*x2*x3)
                    555:     ((b2*x3+b1*x1)*x4)/(x1^2*x4-x1*x2*x3) ]
                    556:
                    557: [3191] mt_gkz.pfaff_eq(A,Beta,Ap,Rvec,[dx1]|cg=Cg)[0]-P1;
                    558:  [ 0 0 ]
                    559:  [ 0 0 ]  // P1 agrees with the output of mt_gkz.pfaff_eq.
                    560: @end example
                    561:
                    562: @comment --- 参照(リンク)を書く ---
                    563: @table @t
                    564: @item Refer to
                    565: @ref{mt_gkz.pfaff_eq}
                    566: @end table
                    567: @comment おわり.
                    568:
1.6       takayama  569: @comment --- contiguity
                    570: @comment --- section 名を正確に ---
                    571: @node mt_gkz.contiguity,,, Pfaff equation for given cocycles
                    572: @subsection @code{mt_gkz.contiguity}
                    573: @comment --- 索引用キーワード
                    574: @findex mt_gkz.contiguity
                    575:
                    576: @table @t
                    577: @item mt_gkz.contiguity(@var{A},@var{Beta},@var{Ap},@var{Rvec1},@var{Rvec2})
                    578: :: It returns the coefficient matrix P that satisfies
                    579: @var{Rvec1} = P @var{Rvec2}.
                    580: @end table
                    581:
                    582: @comment --- 引数の簡単な説明 ---
                    583: @table @var
                    584: @item return
                    585: The coefficient matrix P that satisfies @var{Rvec1} = P @var{Rvec2}.
                    586: @item A Beta Ap Rvec1 Rvec2
                    587: Same with @ref{mt_gkz.pfaff_eq}.
                    588: @end table
                    589:
                    590: @comment --- ここで関数の詳しい説明 ---
                    591: @comment --- @itemize〜@end itemize は箇条書き ---
                    592: @comment --- @bullet は黒点付き ---
                    593: @itemize @bullet
                    594: @item
                    595: It returns the contiguity relation between
                    596: @var{Rvec1} and @var{Rvec2}
                    597: @end itemize
                    598:
                    599: @comment --- @example〜@end example は実行例の表示 ---
                    600: Example:
                    601: @example
                    602: [1883] import("mt_gkz.rr");
                    603: [3200] PP=mt_gkz.contiguity(A=[[1,1,0,0],[0,0,1,1],[0,1,0,1]],
                    604:              Beta=[-g1,-g2,-c],
                    605:              Ap = [[1,1,0,0],[0,0,1,1],[0,0,0,0]],
                    606:              Rvec1 = [[1,0,0,0],[0,0,1,0]],
                    607:              Rvec2 = [[0,0,1,0],[1,0,0,0]]);
                    608: @end example
                    609:
                    610: @comment --- 参照(リンク)を書く ---
                    611: @table @t
                    612: @item Refer to
                    613: @ref{mt_gkz.pfaff_eq}
                    614: @ref{mt_gkz.fvec_to_conn_mat}
                    615: @end table
                    616: @comment おわり.
                    617:
1.1       takayama  618: @comment ---------- New Chapter  ---------------
                    619: @node b function,,, Top
                    620: @chapter b function
                    621:
                    622: @menu
                    623: * mt_gkz.bf::
                    624: * mt_gkz.bf::
                    625: @end menu
                    626:
                    627: @node b function and facet polynomial,,, b function
                    628: @section b function and facet polynomial
                    629: @comment ------- bf
                    630: @comment **********************************************************
                    631: @comment --- 個々の関数の説明 ---
                    632: @comment --- section 名を正確に ---
                    633: @node mt_gkz.bf,,, b function and facet polynomial
                    634: @subsection @code{mt_gkz.bf}
                    635: @comment --- 索引用キーワード
                    636: @findex mt_gkz.bf
                    637:
                    638: @table @t
                    639: @item mt_gkz.bf(@var{A},@var{Facet_poly},@var{II0})
                    640: :: It returns the b-function with respect to the direction @var{II0}.
                    641: @end table
                    642:
                    643: @comment --- 引数の簡単な説明 ---
                    644: @table @var
                    645: @item return
                    646: It returns the b-function introduced Saito with respect to the direction @var{II0} in case of @var{A} is normal or an element of b-ideal when a proper shift vector is given in case of @var{A} is not normal.
                    647: @item A
                    648: the matrix A of the GKZ system.
                    649: @item Facet_poly
                    650: The set of facet polynomials of the convex hull of @var{A}.
                    651: @item II0
                    652: Direction expressed as 0, 1, 2, ... (not 1, 2, 3, ...) to obtain the b function.
                    653: @end table
                    654:
                    655: @comment --- ここで関数の詳しい説明 ---
                    656: @comment --- @itemize〜@end itemize は箇条書き ---
                    657: @comment --- @bullet は黒点付き ---
                    658: @itemize @bullet
                    659: @item
                    660: See [SST1999] on the b-function introduced Saito and b-ideal.
                    661: @item
                    662: The facet polynomial must be primitive.
                    663: @end itemize
                    664:
                    665: @comment --- @example〜@end example は実行例の表示 ---
                    666: Example:
                    667: @example
                    668: [1883] import("mt_gkz.rr");
                    669:
                    670: [3193] A;
                    671:   [[1,1,0,0],[0,0,1,1],[0,1,0,1]]
                    672: [3194] Fpoly=mt_gkz.facet_poly(A);
                    673:   [[s_3,s_1,s_2-s_3+s_1,s_2],[[0,0,1],[1,0,0],[1,1,-1],[0,1,0]]]
                    674: [3196] mt_gkz.bf(A,Fpoly,0);
                    675:   s_1*s_2-s_1*s_3+s_1^2
                    676: [3197] mt_gkz.bf(A,Fpoly,1);
                    677:   s_1*s_3
                    678: @end example
                    679:
                    680: @comment --- 参照(リンク)を書く ---
                    681: @table @t
                    682: @item Refer to
                    683: @ref{mt_gkz.ff}
                    684: @ref{mt_gkz.facet_poly}
                    685: @end table
                    686: @comment おわり.
                    687:
                    688: @comment ------ facet_poly
                    689: @comment --- 個々の関数の説明 ---
                    690: @comment --- section 名を正確に ---
                    691: @node mt_gkz.facet_polyl,,, b function and facet polynomial
                    692: @subsection @code{mt_gkz.facet_poly}
                    693: @comment --- 索引用キーワード
                    694: @findex mt_gkz.facet_poly
                    695:
                    696: @table @t
                    697: @item mt_gkz.facet_poly(@var{A})
                    698: :: It returns the set of facet polynomials and their normal vectors of
                    699: the cone defined by  @var{A}.
                    700: @end table
                    701:
                    702: @comment --- 引数の簡単な説明 ---
                    703: @table @var
                    704: @item return
                    705: It returns the set of facet polynomials and their normal vectors of
                    706: the cone generated by the column vectors of the matrix @var{A}.
                    707: @item A
                    708: the matrix A of the GKZ system.
                    709: @end table
                    710:
                    711: @comment --- ここで関数の詳しい説明 ---
                    712: @comment --- @itemize〜@end itemize は箇条書き ---
                    713: @comment --- @bullet は黒点付き ---
                    714: @itemize @bullet
                    715: @item
                    716: The facet polynomial f is primitive. In other words,
                    717: all f(a_i) is integer and min f(a_i)=1 for a_i's not being on f=0.
                    718: where a_i is the i-th column vector of the matrix @var{A}.
                    719: It can be checked by @code{mt_gkz.is_primitive(At,Facets)}
                    720: where @var{At} is the transpose of @var{A} and
                    721: @var{Facets} is the second return value of this function.
                    722: @item
                    723: This function utilizes the system polymake @uref{https://polymake.org}
                    724: on our server.
                    725: @end itemize
                    726:
                    727: @comment --- @example〜@end example は実行例の表示 ---
                    728: Example:
                    729: @example
                    730: [1883] import("mt_gkz.rr");
                    731: [1884] mt_gkz.facet_poly([[1,1,1,1],[0,1,2,3]]);
                    732:   oohg_native=0, oohg_curl=1
                    733:   [[s_2,-s_2+3*s_1],[[0,1],[3,-1]]]
                    734: @end example
                    735:
                    736: @comment --- 参照(リンク)を書く ---
                    737: @table @t
                    738: @item Refer to
                    739: @ref{mt_gkz.bf}
                    740: @end table
                    741: @comment おわり.
                    742:
                    743: @comment ---------- New Chapter  ---------------
                    744: @node utilities,,, Top
                    745: @chapter Utilities
                    746:
                    747: @menu
                    748: * mt_gkz.reduce_by_toric::
                    749: * mt_gkz.tk_base_equal::
                    750: * mt_gkz.dp_op_to_coef_vec::
                    751: * mt_gkz.yang_gkz_buch::
                    752: * mt_gkz.p_true_nf_rat::
                    753: * mt_gkz.mdiff::
                    754: * mt_gkz.dvar::
                    755: * mt_gkz.ord_xi::
                    756: * mt_gkz.get_check_fvec::
                    757: * mt_gkz.get_bf_step_up::
1.2       takayama  758: * mt_gkz.mytoric_ideal::
1.5       takayama  759: * mt_gkz.cbase_by_euler::
1.1       takayama  760: @end menu
                    761:
                    762: @node some utility functions,,, utilities
                    763: @section Some utility functions
                    764:
                    765: @node mt_gkz.reduce_by_toric,,, some utility functions
                    766: @node mt_gkz.tk_base_equal,,, some utility functions
                    767: @node mt_gkz.dp_op_to_coef_vec,,, some utility functions
                    768: @node mt_gkz.yang_gkz_buch,,, some utility functions
                    769: @node mt_gkz.p_true_nf_rat,,, some utility functions
                    770: @node mt_gkz.mdiff,,, some utility functions
                    771: @node mt_gkz.dvar,,, some utility functions
                    772: @node mt_gkz.ord_xi,,, some utility functions
                    773: @node mt_gkz.get_check_fvec,,, some utility functions
                    774: @node mt_gkz.get_bf_step_up,,, some utility functions
1.2       takayama  775: @node mt_gkz.mytoric_ideal,,, some utility functions
1.5       takayama  776: @node mt_gkz.cbase_by_euler,,, some utility functions
1.1       takayama  777:
                    778: @findex mt_gkz.reduce_by_toric
                    779: @findex mt_gkz.tk_base_equal
                    780: @findex mt_gkz.dp_op_to_coef_vec
                    781: @findex mt_gkz.yang_gkz_buch
                    782: @findex mt_gkz.p_true_nf_rat
                    783: @findex mt_gkz.mdiff
                    784: @findex mt_gkz.dvar
                    785: @findex mt_gkz.ord_xi
                    786: @findex mt_gkz.get_check_fvec
                    787: @findex mt_gkz.get_bf_step_up
1.2       takayama  788: @findex mt_gkz.mytoric_ideal
1.5       takayama  789: @findex mt_gkz.cbase_by_euler
1.1       takayama  790:
                    791: @comment --- @example〜@end example は実行例の表示 ---
                    792: We only show examples on these functions. As for details, please see
                    793: the source code.
                    794: @example
                    795: [1883] import("mt_gkz.rr");
                    796: [2667] mt_gkz.dvar([x1,x2]);  // it generates variables starting with d
                    797:   [dx1,dx2]
                    798: [2669] mt_gkz.p_true_nf_rat((1/3)*x^3-1,[x^2-1],[x],0);
                    799:   [x-3,3]     // p_true_nf does not accept rational number coefficients
                    800: [2670] A=[[1,1,1,1],[0,1,3,4]];
                    801:   [[1,1,1,1],[0,1,3,4]]
                    802: [2671] mt_gkz.reduce_by_toric(dx3^4,A);
                    803:   dx1*dx4^3   // reduction by toric ideal defined by A
                    804: [2672] nk_toric.toric_ideal(A);
                    805:   [-x1*x4+x2*x3,-x2*x4^2+x3^3,x2^2*x4-x1*x3^2,-x1^2*x3+x2^3]
                    806: [2673] mt_gkz.yang_gkz_buch(A,[b1,b2]);  // Groebner basis of GKZ system by yang.rr
                    807:  1 o 2 ..o 3 ..oooooooo 4 o 6 ooo 9 o
                    808: [[[(x2)*<<0,1,0,0>>+(3*x3)*<<0,0,1,0>>+ ---snip ---*<<0,0,0,0>>,1]],
                    809: [dx1,dx2,dx3,dx4],
                    810: [(1)*<<0,0,0,2>>,(1)*<<0,0,1,0>>,(1)*<<0,0,0,1>>,(1)*<<0,0,0,0>>]]
                    811:
                    812: [2674] mt_gkz.dp_op_to_coef_vec([x1*<<1,0>>+x1*x2*<<0,1>>,x1+1],[<<1,0>>,<<0,1>>]);
                    813:   // x1+1 is the denominator
                    814:   [ (x1)/(x1+1) (x1*x2)/(x1+1) ]
                    815: [2675] mt_gkz.tk_base_is_equal([1,2],[1,2]);
                    816:  1
                    817: [2676] mt_gkz.tk_base_is_equal([1,2],[1,x,y]);
                    818:  0
                    819: [2677] mt_gkz.mdiff(sin(x),x,1);
                    820:  cos(x)
                    821: [2678] mt_gkz.mdiff(sin(x),x,2); //2nd derivative
                    822:  -sin(x)
                    823: [3164] mt_gkz.ord_xi(V=[x1,x2,x3],II=1);
                    824: // matrix to define graded lexicographic order so that V[II] is the smallest.
                    825: [ 1 1 1 ]
                    826: [ 0 -1 0 ]
                    827: [ -1 0 0 ]
                    828: [3166] load("mt_gkz/check-by-hgpoly.rr");
                    829: [3187] check_0123(); // check the pfaffian for the A below by hg-polynomial.
                    830:   A=[[1,1,1,1],[0,1,2,3]]
                    831:   Ap=[[1,1,1,1],[0,0,0,0]]
                    832:   --- snip ---
                    833:   Bfunctions= --- snip ---
                    834:   0 (vector) is expected:
                    835:   [[ 0 0 0 ],[ 0 0 0 ]]
                    836: [3188] mt_gkz.get_check_fvec();
                    837:  // get the basis of cocycles used in terms of differential operators.
                    838:   [1,(dx4)/(b1),(dx4^2)/(b1^2-b1)]
                    839: [3189] mt_gkz.clear_bf();
                    840: 0
                    841: [3190] mt_gkz.get_bf_step_up(A=[[1,1,1,1],[0,1,2,3]]);
                    842: // b-functions and step-up operators.
                    843: // Option b_ideal=1 or shift=... may be used for non-normal case.
                    844:   [[ -s_2^3+(9*s_1-3)*s_2^2+ ---snip---
                    845:      -s_2^3+(3*s_1+1)*s_2^2-3*s_1*s_2 s_2^3-3*s_2^2+2*s_2 ],
                    846:   [ x3^3*dx4^2+ ---snip---
                    847:     3*x3^2*x4*dx4^2+ --- snip---]]
1.2       takayama  848: [3191] mt_gkz.mytoric_ideal(0 | use_4ti2=1);
                    849: // 4ti2 is used to obtain a generator set of the toric ideal
                    850: // defined by the matrix A
                    851: [3192] mt_gkz.mytoric_ideal(0 | use_4ti2=0);
                    852: // A slower method is used to obtain a generator set of the toric ideal
                    853: // defined by the matrix A.  4ti2 is not needed. Default.
1.5       takayama  854: [3193] mt_gkz.cbase_by_euler(A=[[1,1,1,1],[0,1,3,4]]);
                    855: // Cohomology basis of the GKZ system defined by A for generic beta.
                    856: // Basis is given by a set of Euler operators.
                    857: // It is an implementation of the algorithm in http://dx.doi.org/10.1016/j.aim.2016.10.021
                    858: // beta is set by random numbers. Option: no_prob=1
                    859:
1.1       takayama  860: @end example
                    861:
                    862:
                    863:
                    864:
                    865:
                    866:
                    867:
                    868:
                    869:
                    870:
                    871:
                    872:
                    873:
                    874:
                    875:
                    876:
                    877:
                    878:
                    879:
                    880:
                    881:
                    882:
                    883:
                    884:
                    885:
                    886:
                    887:
                    888:
                    889:
                    890:
                    891:
                    892:
                    893:
                    894:
                    895:
                    896:
                    897:
                    898:
                    899:
                    900:
                    901:
                    902:
                    903:
                    904:
                    905:
                    906:
                    907:
                    908:
                    909:
                    910:
                    911:
                    912:
                    913:
                    914:
                    915:
                    916:
                    917: @comment ここから追加版
                    918:
                    919: @node Cohomology intersection numbers,,, Top
                    920: @chapter Cohomology intersection numbers
                    921:
                    922: @menu
                    923: * mt_gkz.kronecker_prd::
                    924: * mt_gkz.secondary_eq::
                    925: * mt_gkz.generate_maple_file_IC::
                    926: * mt_gkz.generate_maple_file_MR::
1.2       takayama  927: * mt_gkz.principal_normalizing_constant::
1.1       takayama  928: @end menu
                    929:
                    930:
                    931:
                    932:
                    933:
                    934:
                    935: @node Secondary equation,,, Cohomology intersection numbers
                    936: @section Secondary equation
                    937:
                    938: @comment **********************************************************
                    939: @comment --- 関数 pfaff_eq
                    940: @node mt_gkz.kronecker_prd,,, Secondary equation
                    941: @subsection @code{mt_gkz.kronecker_prd}
                    942: @comment --- 索引用キーワード
                    943: @findex mt_gkz.kronecker_prd
                    944:
                    945: @table @t
                    946: @item mt_gkz.kronecker_prd(@var{A},@var{B})
                    947: :: It returns the Kronecker product of @var{A} and @var{B}.
                    948: @end table
                    949:
                    950: @comment --- 引数の簡単な説明 ---
                    951: @table @var
                    952: @item return
1.2       takayama  953: a matrix which is equal to the Kronecker product of @var{A} and @var{B} (@uref{https://en.wikipedia.org/wiki/Kronecker_product}).
1.1       takayama  954: @item A,B
                    955: list
                    956: @end table
                    957:
                    958:
                    959: @comment --- @example〜@end example は実行例の表示 ---
                    960:
                    961: @example
                    962: [2644]  A=[[a,b],[c,d]];
                    963: [[a,b],[c,d]]
                    964: [2645] B=[[e,f],[g,h]];
                    965: [[e,f],[g,h]]
1.2       takayama  966: [2646] mt_gkz.kronecker_prd(A,B);
1.1       takayama  967: [ e*a f*a e*b f*b ]
                    968: [ g*a h*a g*b h*b ]
                    969: [ e*c f*c e*d f*d ]
                    970: [ g*c h*c g*d h*d ]
                    971: @end example
                    972:
                    973:
                    974:
                    975:
                    976:
                    977:
                    978:
                    979:
                    980: @node mt_gkz.secondary_eq,,, Secondary equation
                    981: @subsection @code{mt_gkz.secondary_eq}
                    982: @comment --- 索引用キーワード
                    983: @findex mt_gkz.secondary_eq
                    984:
                    985: @table @t
                    986: @item mt_gkz.secondary_eq(@var{A},@var{Beta},@var{Ap},@var{Rvec},@var{DirX})
                    987: :: It returns the secondary equation with respect to cocycles defined by Rvec.
                    988: @end table
                    989:
                    990:
                    991: @table @var
                    992: @item return
                    993: a list of coefficients of the Pfaffian system corresponding to the secondary equation (cf. equation (8) of [MT2020]).
                    994: @item A,Beta,Ap,Rvec,DirX
                    995: see @code{pfaff_eq}
                    996: @end table
                    997:
                    998:
                    999:
                   1000: @comment --- ここで関数の詳しい説明 ---
                   1001: @comment --- @itemize〜@end itemize は箇条書き ---
                   1002: @comment --- @bullet は黒点付き ---
                   1003: @itemize @bullet
                   1004: @item
                   1005: The secondary equation is originally a Pfaffian system for an unkwon @math{r} by @math{r} matrix @math{I} with @math{r=}length(Rvec). We set @math{Y=(I_{11},I_{12},...,I_{1r},I_{21},I_{22},...)^T}. Then, the secondary equation can be seen as a Pfaffian system @math{{dY\over dx_i}=A_iY} with DirX=@math{\{dx_i\}_i}. The function mt_gkz.secondary_eq(@var{A},@var{Beta},@var{Ap},@var{Rvec},@var{DirX}) outputs a list obtained by aligning the matrices @math{A_i}.
                   1006: @item
                   1007: Let @math{F:=(\omega_i)_i} be a column vector whose entries are given by the cohomology classes specified by entries of Rvec. Then, @code{pfaff_eq} computes the Pfaffian matrices @math{P_i} so that @math{{dF\over dx_i}=P_iF}. If @math{Q_i} denotes the matrix obtained by replacing Beta by -Beta, we have @math{A_i=}@code{mt_gkz.kronecker_prd}(E,@math{P_i})+@code{mt_gkz.kronecker_prd}(@math{Q_i},E) where E is the identity matrix of size length(Rvec).
                   1008: @item Options xrule, shift, b_ideal,cg.
                   1009: Same as @code{pfaff_eq}.
                   1010: @end itemize
                   1011:
                   1012: @comment --- @example〜@end example は実行例の表示 ---
                   1013: Example:
                   1014: @example
                   1015: [2647] Beta=[b1,b2,b3]$
                   1016: [2648] DirX=[dx1,dx4]$
                   1017: [2649] Rvec=[[1,0,0,0],[0,0,1,0]]$
                   1018: [2650] A=[[1,1,0,0],[0,0,1,1],[0,1,0,1]]$
                   1019: [2651] Ap=[[1,1,0,0],[0,0,1,1],[0,0,0,0]]$
                   1020: [2652] Xrule=[[x2,1],[x3,1]]$
1.2       takayama 1021: [2653] P=mt_gkz.secondary_eq(A,Beta,Ap,Rvec,DirX|xrule=Xrule)$
1.1       takayama 1022: --snip--
                   1023: [2654] length(P);
                   1024: 2
                   1025: [2655] P[0];
                   1026: [[(-2*x1^3*x4^2+4*x1^2*x4-2*x1)/(x1^4*x4^2-2*x1^3*x4+x1^2),(b2*x4)/(x1^2*x4-x1),
                   1027: (-b2*x4)/(x1^2*x4-x1),0],[(b1)/(x1*x4-1),
                   1028: ((b2-4/3)*x1^2*x4^2+(-b1-b2+8/3)*x1*x4+b1-4/3)/(x1^3*x4^2-2*x1^2*x4+x1),0,
                   1029: (-b2*x4)/(x1^2*x4-x1)],[(-b1)/(x1*x4-1),0,
                   1030: ((-b2-2/3)*x1^2*x4^2+(b1+b2+4/3)*x1*x4-b1-2/3)/(x1^3*x4^2-2*x1^2*x4+x1),
                   1031: (b2*x4)/(x1^2*x4-x1)],[0,(-b1)/(x1*x4-1),(b1)/(x1*x4-1),0]]
                   1032: <--- Paffian matrix in x1 direction.
                   1033: [2656] P[1];
                   1034: [[0,(b2)/(x1*x4-1),(-b2)/(x1*x4-1),0],[(b1*x1)/(x1*x4^2-x4),
                   1035: ((b2-1/3)*x1^2*x4^2+(-b1-b2+2/3)*x1*x4+b1-1/3)/(x1^2*x4^3-2*x1*x4^2+x4),0,
                   1036: (-b2)/(x1*x4-1)],[(-b1*x1)/(x1*x4^2-x4),0,
                   1037: ((-b2+1/3)*x1^2*x4^2+(b1+b2-2/3)*x1*x4-b1+1/3)/(x1^2*x4^3-2*x1*x4^2+x4),
                   1038: (b2)/(x1*x4-1)],[0,(-b1*x1)/(x1*x4^2-x4),(b1*x1)/(x1*x4^2-x4),0]]
                   1039: <--- Paffian matrix in x4 direction.
                   1040: @end example
                   1041:
                   1042: @comment --- 参照(リンク)を書く ---
                   1043: @table @t
                   1044: @item Refer to
                   1045: @ref{mt_gkz.pfaff_eq}
                   1046: @end table
                   1047: @comment おわり.
                   1048:
                   1049:
                   1050:
                   1051:
                   1052: @node mt_gkz.generate_maple_file_IC,,, Secondary equation
                   1053: @subsection @code{mt_gkz.generate_maple_file_IC}
                   1054: @comment --- 索引用キーワード
                   1055: @findex mt_gkz.generate_maple_file_IC
                   1056:
                   1057: @table @t
                   1058: @item mt_gkz.generate_maple_file_IC(@var{A},@var{Beta},@var{Ap},@var{Rvec},@var{DirX})
                   1059: :: It returns the maple input for a solver of a Pfaffian system IntegrableConnections[RationalSolutions].
                   1060: @end table
                   1061:
                   1062: @comment --- 引数の簡単な説明 ---
                   1063: @table @var
                   1064: @item return
                   1065: a maple input file for the function IntegrableConnections[RationalSolutions] (cf. [BCEW]) for the Pfaffian system mt_gkz.secondary_eq(@var{A},@var{Beta},@var{Ap},@var{Rvec},@var{DirX}).
                   1066: @item A,Beta,Ap,Rvec,DirX
                   1067: see @code{pfaff_eq}.
                   1068: @end table
                   1069:
                   1070: @comment --- ここで関数の詳しい説明 ---
                   1071: @comment --- @itemize〜@end itemize は箇条書き ---
                   1072: @comment --- @bullet は黒点付き ---
                   1073: @itemize @bullet
                   1074: @item
                   1075: A maple package IntegrableConnections is available in [BCEW]. In order to use IntegrableConnections, you need to add the global path to the file IntegrableConnections.m to libname on maple. See [BCEW].
                   1076: @item
                   1077: If Beta contains unkwon variables, they are regarded as generic parameters. For example, if Beta=[b1,b2,1/5,1/7,b5,...], parameters are [b1,b2,b5,...].
                   1078: @item Options xrule, shift, b_ideal,cg.
                   1079: Same as @code{pfaff_eq}.
                   1080: @item Option filename.
                   1081: You can specify the file name by specifying the option variable filename. If you do not specify it, @code{generate_maple_file_IC} generates a file "auto-generated-IC.ml".
                   1082: @end itemize
                   1083:
                   1084: @comment --- @example〜@end example は実行例の表示 ---
                   1085: Example:
                   1086: @example
                   1087: [2681] Beta=[b1,b2,1/3]$
                   1088: [2682] DirX=[dx1,dx4]$
                   1089: [2683] Rvec=[[1,0,0,0],[0,0,1,0]]$
                   1090: [2684] A=[[1,1,0,0],[0,0,1,1],[0,1,0,1]]$
                   1091: [2685] Ap=[[1,1,0,0],[0,0,1,1],[0,0,0,0]]$
                   1092: [2687] Xrule=[[x2,1],[x3,1]]$
1.2       takayama 1093: [2688] mt_gkz.generate_maple_file_IC(A,Beta,Ap,Rvec,DirX|xrule=Xrule,filename="Test.ml")$
1.1       takayama 1094:
                   1095:
                   1096: //A file named Test.ml is automatically generated as follows:
                   1097:
                   1098:
                   1099:
                   1100: with(OreModules);
                   1101: with(IntegrableConnections);
                   1102: with(linalg);
                   1103: C:=[Matrix([[(-2*x1^3*x4^2+4*x1^2*x4-2*x1)/(x1^4*x4^2-2*x1^3*x4+x1^2),
                   1104: (b2*x4)/(x1^2*x4-x1),(-b2*x4)/(x1^2*x4-x1),0],[(b1)/(x1*x4-1),
                   1105: ((b2-4/3)*x1^2*x4^2+(-b1-b2+8/3)*x1*x4+b1-4/3)/(x1^3*x4^2-2*x1^2*x4+x1),0,
                   1106: (-b2*x4)/(x1^2*x4-x1)],[(-b1)/(x1*x4-1),0,
                   1107: ((-b2-2/3)*x1^2*x4^2+(b1+b2+4/3)*x1*x4-b1-2/3)/(x1^3*x4^2-2*x1^2*x4+x1),
                   1108: (b2*x4)/(x1^2*x4-x1)],[0,(-b1)/(x1*x4-1),(b1)/(x1*x4-1),0]]),
                   1109: Matrix([[0,(b2)/(x1*x4-1),(-b2)/(x1*x4-1),0],[(b1*x1)/(x1*x4^2-x4),
                   1110: ((b2-1/3)*x1^2*x4^2+(-b1-b2+2/3)*x1*x4+b1-1/3)/(x1^2*x4^3-2*x1*x4^2+x4),0,
                   1111: (-b2)/(x1*x4-1)],[(-b1*x1)/(x1*x4^2-x4),0,
                   1112: ((-b2+1/3)*x1^2*x4^2+(b1+b2-2/3)*x1*x4-b1+1/3)/(x1^2*x4^3-2*x1*x4^2+x4),
                   1113: (b2)/(x1*x4-1)],[0,(-b1*x1)/(x1*x4^2-x4),(b1*x1)/(x1*x4^2-x4),0]])];
                   1114: RatSols:=RationalSolutions(C,[x1,x4],['param',[b1,b2]]);
                   1115:
                   1116:
                   1117: /*
                   1118: If you run the output file on maple, you obtain a rational solution of
                   1119: the secondary equation.
                   1120: */
                   1121:
                   1122:          [b2*(3*b1-1)/(b1*x1^2)]
                   1123: RatSols:=[3*b2/x1              ]
                   1124:          [3*b2/x1              ]
                   1125:          [3*b2-1               ]
                   1126:
                   1127: /*
                   1128: Note that the 4 entries of this vector correspond to entries of a 2 by 2 matrix.
                   1129: They are aligned as (1,1), (1,2), (2,1) (2,2) from the top.
                   1130: */
                   1131: @end example
                   1132:
                   1133: @*
                   1134:
                   1135: @comment --- 参照(リンク)を書く ---
                   1136: @table @t
                   1137: @item Refer to
                   1138: @ref{mt_gkz.pfaff_eq}
                   1139: @end table
                   1140: @comment おわり.
                   1141:
                   1142:
                   1143:
                   1144:
                   1145:
                   1146:
                   1147:
                   1148:
                   1149: @node mt_gkz.generate_maple_file_MR,,, Secondary equation
                   1150: @subsection @code{mt_gkz.generate_maple_file_MR}
                   1151: @comment --- 索引用キーワード
                   1152: @findex mt_gkz.generate_maple_file_MR
                   1153:
                   1154: @table @t
                   1155: @item mt_gkz.generate_maple_file_MR(@var{A},@var{Beta},@var{Ap},@var{Rvec},@var{DirX},@var{D1},@var{D2})
                   1156: :: It returns the maple input for a solver of a Pfaffian system MorphismsRat[OreMorphisms].
                   1157: @end table
                   1158:
                   1159: @comment --- 引数の簡単な説明 ---
                   1160: @table @var
                   1161: @item return
                   1162: a maple input file for the function MorphismsRat[OreMorphisms] (cf. [CQ]) for the Pfaffian system obtained by @code{secondary_eq}. If you run the output file on maple, you obtain a rational solution of the secondary equation.
                   1163: @item A,Beta,Ap,Rvec,DirX
                   1164: see @code{pfaff_eq}.
                   1165: @item D1,D2
                   1166: Positive integers. D1 (resp. D2) is the upper bound of the degree of the numerator (resp. denominator) of the solution.
                   1167: @end table
                   1168:
                   1169: @comment --- ここで関数の詳しい説明 ---
                   1170: @comment --- @itemize〜@end itemize は箇条書き ---
                   1171: @comment --- @bullet は黒点付き ---
                   1172: @itemize @bullet
                   1173: @item
                   1174: We use the same notation as the explanation of @code{generate_maple_file_IC}. Let @math{D} denote the ring of linear differential operators with coeffiecients in the field of rational functions. We consider @math{D}-modules @math{R:=D^{1\times l}/\sum_{dx_i\in DirX}D^{1\times l}(\partial_i E-P_i)} and @math{S:=D^{1\times l}/\sum_{dx_i\in DirX}D^{1\times l}(\partial_i E+Q_i^T)} where @math{l=}length(Rvec). Then, computing a rational solution of the secondary equation is equivalent to computing a @math{D}-morphism from @math{R} to @math{S} represented by rational function matrix (cf. pp12-13 of [CQ08]).
                   1175: @item
                   1176: A  maple package OreMorphisms is available in [CQ]. In order to use OreMorphisms, you need to add the global path to the file OreMorphisms.m to libname on maple.
                   1177: @item Options xrule, shift, b_ideal,cg.
                   1178: Same as @code{pfaff_eq}.
                   1179: @item Option filename.
                   1180: You can specify the file name as in @code{generate_maple_file_IC}.
                   1181: @item
                   1182: The difference between @code{generate_maple_file_IC} and @code{generate_maple_file_MR} is the appearence of auxilliary variables D1 and D2. If you can guess the degree of the numerator and the denominator of the solution of the secondary equation, MorphismsRat[OreMorphisms] can be faster than RationalSolutions[IntegrableConnections].
                   1183: @end itemize
                   1184:
                   1185: @comment --- @example〜@end example は実行例の表示 ---
                   1186: Example:
                   1187: @example
                   1188: [2668] Beta=[b1,b2,1/3]$
                   1189: [2669] DirX=[dx1,dx4]$
                   1190: [2670] Rvec=[[1,0,0,0],[0,0,1,0]]$
                   1191: [2671] A=[[1,1,0,0],[0,0,1,1],[0,1,0,1]]$
                   1192: [2672] Ap=[[1,1,0,0],[0,0,1,1],[0,0,0,0]]$
                   1193: [2673] Xvar=[x1,x4]$
                   1194: [2674] Xrule=[[x2,1],[x3,1]]$
1.2       takayama 1195: [2675] mt_gkz.generate_maple_file_MR(A,Beta,Ap,Rvec,DirX,2,2|xrule=Xrule)$
1.1       takayama 1196:
                   1197:
                   1198: //A file "auto-generated-MR.ml" is automatically generated as follows:
                   1199:
                   1200:
                   1201: with(OreModules);
                   1202: with(OreMorphisms);
                   1203: with(linalg);
                   1204: Alg:=DefineOreAlgebra(diff=[dx1,x1],diff=[dx4,x4],polynom=[x1,x4],comm=[b1,b2]);
                   1205: P:=Matrix([[dx1,0],[0,dx1],[dx4,0],[0,dx4]])
                   1206: -Matrix([[((b1+b2-4/3)*x1*x4-b1+4/3)/(x1^2*x4-x1),(-b2*x4)/(x1^2*x4-x1)],
                   1207: [(-b1)/(x1*x4-1),(b1*x4)/(x1*x4-1)],[(b2*x1)/(x1*x4-1),(-b2)/(x1*x4-1)],
                   1208: [(-b1*x1)/(x1*x4^2-x4),(1/3*x1*x4+b1-1/3)/(x1*x4^2-x4)]]);
                   1209: Q:=Matrix([[dx1,0],[0,dx1],[dx4,0],[0,dx4]])
                   1210: +Matrix([[((-b1-b2-2/3)*x1*x4+b1+2/3)/(x1^2*x4-x1),(b1)/(x1*x4-1)],
                   1211: [(b2*x4)/(x1^2*x4-x1),(-b1*x4)/(x1*x4-1)],[(-b2*x1)/(x1*x4-1),(b1*x1)/(x1*x4^2-x4)],
                   1212: [(b2)/(x1*x4-1),(-1/3*x1*x4-b1+1/3)/(x1*x4^2-x4)]]);
                   1213: RatSols:=MorphismsRat(P,Q,Alg,0,2,2);
                   1214:
                   1215: /*
                   1216: If you run the output file on maple, you obtain a vector RatSols.
                   1217: RatSols[1] is the rational solution of the secondary equation:
                   1218: */
                   1219:
                   1220: RatSols[1]:=[(1/3)*@math{n_{2_{1_{3_1}}}}*(3*b1-1)/(b1*x1^2*@math{d_{6_1}})  @math{n_{2_{1_{3_1}}}}/(x1*@math{d_{6_1}})]
                   1221:             [@math{n_{2_{1_{3_1}}}}/(x1*@math{d_{6_1}})       (1/3)*@math{n_{2_{1_{3_1}}}}*(3*b2-1)/(b2*@math{d_{6_1}})]
                   1222:
                   1223: /*
                   1224: Here, @math{n_{2_{1_{3_1}}}} and @math{d_{6_1}} are arbitrary constants. We can take @math{n_{2_{1_{3_1}}}=3*b2} and @math{d_{6_1}=1} to obtain the rational solution of the secondary equation which is identical to the one obtained from @code{generate_maple_file_IC}.
                   1225: */
                   1226: @end example
                   1227:
                   1228: @*
                   1229:
                   1230: @comment --- 参照(リンク)を書く ---
                   1231: @table @t
                   1232: @item Refer to
                   1233: @ref{mt_gkz.pfaff_eq}, @ref{mt_gkz.generate_maple_file_IC}.
                   1234: @end table
                   1235: @comment おわり.
                   1236:
                   1237:
                   1238:
                   1239:
                   1240:
                   1241:
                   1242:
                   1243:
                   1244:
                   1245:
                   1246:
                   1247:
                   1248: @node Normalizing constant,,, Cohomology intersection numbers
                   1249: @section Normalizing the cohomology intersection matrix
                   1250:
                   1251:
                   1252: @node mt_gkz.principal_normalizing_constant,,, Normalizing constant
                   1253: @subsection @code{mt_gkz.principal_normalizing_constant}
                   1254: @comment --- 索引用キーワード
                   1255: @findex mt_gkz.principal_normalizing_constant
                   1256:
                   1257: @table @t
                   1258: @item mt_gkz.principal_normalizing_constant(@var{A},@var{T},@var{Beta},@var{K})
                   1259: :: It returns the normalizing constant of the cohomology intersection matrix in terms of a regular triangulation T.
                   1260: @end table
                   1261:
                   1262: @comment --- 引数の簡単な説明 ---
                   1263: @table @var
                   1264: @item return
1.3       takayama 1265: a rational function which is the cohomology intersection number @math{{1\over (2\pi\sqrt{-1})^n} \langle[{dt\over t}],[{dt\over t}]\rangle_{ch}} in terms of the regular triangulation T. Here, @math{n} is the number of integration variables and @math{dt\over t} is the volume form @math{{dt_1\over t_1}\wedge\cdots\wedge{dt_n\over t_n}} of the complex @math{n}-torus.
1.1       takayama 1266: @item A,Beta
                   1267: see @code{pfaff_eq}.
                   1268: @item T
                   1269: a regular triangulation of A.
                   1270: @item K
                   1271: The number of polynomial factors in the integrand. see [MT2020].
                   1272: @end table
                   1273:
                   1274: @comment --- ここで関数の詳しい説明 ---
                   1275: @comment --- @itemize〜@end itemize は箇条書き ---
                   1276: @comment --- @bullet は黒点付き ---
                   1277: @itemize @bullet
                   1278: @item
1.3       takayama 1279: This function is useful when the basis of the cohomology group @math{\{\omega_i\}_{i=1}^r} is given so that @math{\omega_1=[{dt\over t}]}.
1.1       takayama 1280: @item
1.3       takayama 1281: One can find a regular triangulation by using a function @code{mt_gkz.regular_triangulation}.
                   1282: @item
                   1283: @code{mt_gkz.leading_terms} can be used more generally.
1.1       takayama 1284: @end itemize
                   1285:
                   1286: @comment --- @example〜@end example は実行例の表示 ---
                   1287: Example:
                   1288: @example
                   1289: [2676] A=[[1,1,0,0],[0,0,1,1],[0,1,0,1]]$
                   1290: [2677] Beta=[b1,b2,b3]$
                   1291: [2678] K=2$
                   1292: [2679] T=[[1,2,3],[2,3,4]]$
1.2       takayama 1293: [2680] mt_gkz.principal_normalizing_constant(A,T,Beta,K);
1.1       takayama 1294: (-b1-b2)/(b3*b1+b3*b2-b3^2)
                   1295: @end example
                   1296:
                   1297: @comment --- 参照(リンク)を書く ---
                   1298: @table @t
                   1299: @item Refer to
1.3       takayama 1300: @ref{mt_gkz.leading_terms}.
1.1       takayama 1301: @end table
                   1302: @comment おわり.
                   1303:
                   1304:
                   1305:
                   1306:
                   1307:
                   1308:
                   1309:
                   1310:
1.3       takayama 1311: @node mt_gkz.leading_terms,,, Normalizing constant
                   1312: @subsection @code{mt_gkz.leading_terms}
1.1       takayama 1313: @comment --- 索引用キーワード
                   1314: @findex mt_gkz.leading_terms
                   1315:
                   1316: @table @t
1.3       takayama 1317: @item mt_gkz.leading_terms(@var{A},@var{Beta},@var{W},@var{Q1},@var{Q2},@var{K},@var{N})
1.1       takayama 1318: :: It returns the W-leading terms of a cohomology intersection number specified by Q1 and Q2 up to W-degree=(minimum W-degree)+N.
                   1319: @end table
                   1320:
                   1321: @comment --- 引数の簡単な説明 ---
                   1322: @table @var
                   1323: @item return
1.3       takayama 1324: a list [[C1,DEG1],[C2,DEG2],...]. Each CI is a rational function depending on Beta times a monomial @math{x^m} in x-variables. DEGI is the W-degree of @math{x^m}. The cohomology intersection number @math{{1\over (2\pi\sqrt{-1})^n} \langle[h^{-q_1^\prime}t^{q_1^{\prime\prime}}{dt\over t}],[h^{-q_2^\prime}t^{q_2^{\prime\prime}}{dt\over t}]\rangle_{ch}} has a Laurent expansion of the form C1+C2+....
1.1       takayama 1325: @item A,Beta
                   1326: see @code{pfaff_eq}.
                   1327: @item W
                   1328: a positive and integral weight vector.
                   1329: @item Q1,Q2
                   1330: @math{Q1=(q_1^\prime,q_1^{\prime\prime})^T}, @math{Q2=(q_2^\prime,q_2^{\prime\prime})^T} are integer vectors. The lengths of @math{q_1^\prime} and @math{q_2^\prime} are both equal to @math{K}.
                   1331: @item K
                   1332: The number of polynomial factors in the integrand. see [MT2020].
                   1333: @item N
                   1334: A positive integer.
                   1335: @end table
                   1336:
                   1337: @comment --- ここで関数の詳しい説明 ---
                   1338: @comment --- @itemize〜@end itemize は箇条書き ---
                   1339: @comment --- @bullet は黒点付き ---
                   1340: @itemize @bullet
                   1341: @item
                   1342: For a monomial @math{x^m=x_1^{m_1}\cdots x_n^{m_n}} and a weight vector @math{W=(w_1,\dots,w_n)}, the W-degree of @math{x^m} is given by the dot product @math{m\cdot W=m_1w_1+\cdots +m_nw_n}.
                   1343: @item
1.3       takayama 1344: The W-leading terms of the cohomology intersection number @math{{1\over (2\pi\sqrt{-1})^n} \langle[h^{-q_1^\prime}t^{q_1^{\prime\prime}}{dt\over t}],[h^{-q_2^\prime}t^{q_2^{\prime\prime}}{dt\over t}]\rangle_{ch}} can be computed by means of Theorem 2.6 of [GM2020]. See also Theorem 3.4.2 of [SST2000].
1.1       takayama 1345: @item
                   1346: If the weight vector is not generic, you will receive an error message such as "WARNING(initial_mon): The weight may not be generic". In this case, the output may be wrong and you should retake a suitable W. To be more precise, W should be chosen from an open cone of the Groebner fan.
                   1347: @item Option xrule.
                   1348: Same as @code{pfaff_eq}.
                   1349: @end itemize
                   1350:
                   1351: @comment --- @example〜@end example は実行例の表示 ---
                   1352: Example:
                   1353: @example
                   1354: [2922] Beta=[b1,b2,1/3];
                   1355: [b1,b2,1/3]
                   1356: [2923] Q=[[1,0,0],[0,1,0]];
                   1357: [[1,0,0],[0,1,0]]
                   1358: [2924] A=[[1,1,0,0],[0,0,1,1],[0,1,0,1]];
                   1359: [[1,1,0,0],[0,0,1,1],[0,1,0,1]]
                   1360: [2925] W=[1,0,0,0];
                   1361: [1,0,0,0]
                   1362: [2926] K=2;
                   1363: 2
                   1364: [2927] N=2;
                   1365: 2
1.3       takayama 1366: [2928] NC=mt_gkz.leading_terms(A,Beta,W,Q[0],Q[1],K,N|xrule=[[x2,1],[x3,1],[x4,1]])$
1.1       takayama 1367: --snip--
                   1368: [2929] NC;
                   1369: [[(-3)/(x1),-5],[0,-4],[0,-3]]
                   1370:
                   1371:
                   1372: /*
                   1373: This output means that the W-leading term of the (1,2) entry of the cohomology
                   1374: intersection matrix is @math{(-3)/(x1)\times (2\pi\sqrt{-1})}. In view of examples of @code{generate_maple_file_IC} or @code{generate_maple_file_MR}, we can conclude that the cohomology
                   1375: intersection matrix is given by
                   1376: */
                   1377:
                   1378: [-(3*b1-1)/(b1*x1^2)  -3/x1        ]
                   1379: [-3/x1                -(3*b2-1)/b2]]
                   1380:
                   1381:
                   1382: //divided by  2@math{\pi\sqrt{-1}}.
                   1383: @end example
                   1384:
                   1385:
                   1386: @comment --- 参照(リンク)を書く ---
                   1387: @table @t
                   1388: @item Refer to
1.3       takayama 1389: @ref{mt_gkz.leading_terms}, @ref{mt_gkz.generate_maple_file_IC}, @ref{mt_gkz.generate_maple_file_MR}.
1.1       takayama 1390: @end table
                   1391: @comment おわり.
                   1392:
                   1393:
                   1394:
                   1395:
                   1396:
                   1397: @node mt_gkz.leading_term_rat,,, Normalizing constant
                   1398: @subsection @code{mt_gkz.leading_term_rat}
                   1399: @comment --- 索引用キーワード
                   1400: @findex mt_gkz.leading_term_rat
                   1401:
                   1402: @table @t
                   1403: @item mt_gkz.leading_term_rat(@var{P},@var{W},@var{V})
                   1404: :: It returns the W-leading term of a rational function P depending on variables V.
                   1405: @end table
                   1406:
                   1407: @comment --- 引数の簡単な説明 ---
                   1408: @table @var
                   1409: @item return
                   1410: It returns the W-leading term of a rational function P.
                   1411: @item P
                   1412: a rational function.
                   1413: @item W
                   1414: a weight vector.
                   1415: @item V
                   1416: a list of variables of P.
                   1417: @end table
                   1418:
                   1419: @comment --- ここで関数の詳しい説明 ---
                   1420: @comment --- @itemize〜@end itemize は箇条書き ---
                   1421: @comment --- @bullet は黒点付き ---
                   1422: @itemize @bullet
                   1423: @item
1.3       takayama 1424: This function is supposed to be combined with @code{leading_terms} to compute the leading term of a cohomology intersection number.
1.1       takayama 1425: @item
                   1426: If W is chose so that there are several initial terms, you will receive an error message "WARNING(leading_term_rat):The weight vector may not be generic."
                   1427: @end itemize
                   1428:
                   1429:
                   1430: @comment --- 参照(リンク)を書く ---
                   1431: @table @t
                   1432: @item Refer to
1.3       takayama 1433: @ref{mt_gkz.leading_terms}.
1.1       takayama 1434: @end table
                   1435: @comment おわり.
                   1436:
                   1437:
                   1438:
                   1439:
                   1440:
                   1441:
                   1442: @node Regular triangulations,,, Cohomology intersection numbers
                   1443: @section Regular triangulations
                   1444:
                   1445: @comment --- 個々の関数の説明 ---
                   1446: @comment --- section 名を正確に ---
                   1447: @node mt_gkz.toric_gen_initial,,, Regular triangulations
                   1448: @node mt_gkz.regular_triangulation,,, Regular triangulations
                   1449: @node mt_gkz.top_standard_pairs,,, Regular triangulations
                   1450: @subsection @code{mt_gkz.toric_gen_initial}, @code{mt_gkz.regular_triangulation}, @code{mt_gkz.top_standard_pairs}
                   1451: @comment --- 索引用キーワード
                   1452: @findex mt_gkz.toric_gen_initial
                   1453: @findex mt_gkz.regular_triangulation
                   1454: @findex mt_gkz.top_standard_pairs
                   1455:
                   1456: @table @t
                   1457: @item mt_gkz.toric_gen_initial(@var{A},@var{W})
                   1458: @item mt_gkz.regular_triangulation(@var{A},@var{W})
                   1459: @item mt_gkz.top_standard_pairs(@var{A},@var{W})
                   1460: :: utility functions for computing ring theoretic invariants: generic initial ideal for the toric ideal specified by the matrix A and a weight W, its associated regular triangulation, and its associated top-dimensional standard pairs.
                   1461: @end table
                   1462:
                   1463: @comment --- 引数の簡単な説明 ---
                   1464: @table @var
                   1465: @item return
                   1466: @code{toric_gen_initial} returns a list [L1,L2] of length 2. L1 is a list of generators of the W-initial ideal of the toric ideal @math{I_A} specified by A. L2 is a list of variables of @math{I_A}.
                   1467: @item return
                   1468: @code{regular_triangulation} returns a list of simplices of a regular triangulation @math{T_W} specified by the weight W.
                   1469: @item return
                   1470: @code{top_standard_pairs} returns a list of the form [[L1,S1],[L2,S2],...]. Each SI is a simplex of @math{T_W}. Each LI is a list of exponents.
                   1471: @item A
                   1472: a configuration matrix.
                   1473: @item W
                   1474: a positive weight vector.
                   1475: @end table
                   1476:
                   1477: @comment --- ここで関数の詳しい説明 ---
                   1478: @comment --- @itemize〜@end itemize は箇条書き ---
                   1479: @comment --- @bullet は黒点付き ---
                   1480: @itemize @bullet
                   1481: @item
                   1482: As for the definition of the standard pair, see Chapter 3 of [SST00].
                   1483: @item
                   1484: We set n=length(A) and set BS1:=@math{\{ 1,2,...,n\}\setminus S1}. Then, each L1[I] is an exponent @math{\bf k} of a top-dimensional standard pair @math{(\partial^{\bf k}_{BS1},S1)}. Here, @math{\bf k} is a list of length n-length(S1) and @math{\partial_{BS1}=(\partial_J)_{J\in BS1}}.
                   1485: @item
1.3       takayama 1486: If the weight vector is not generic, you will receive an error message such as "WARNING(initial_mon): The weight may not be generic". See also @code{leading_terms}.
1.1       takayama 1487: @item
1.3       takayama 1488: These functions are utilized in @code{leading_terms}.
1.1       takayama 1489: @end itemize
                   1490:
                   1491: @comment --- @example〜@end example は実行例の表示 ---
                   1492: Example: An example of a non-unimodular triangulation and non-trivial standard pairs.
                   1493: @example
                   1494: [3256] A=[[1,1,1,1,1],[0,1,0,2,0],[0,0,1,0,2]];
                   1495: [[1,1,1,1,1],[0,1,0,2,0],[0,0,1,0,2]]
                   1496: [3257] W=[2,0,1,2,2];
                   1497: [2,0,1,2,2]
1.3       takayama 1498: [3258] mt_gkz.toric_gen_initial(A,W);
1.1       takayama 1499: --snip--
                   1500: [[x1*x5,x1*x4,x3^2*x4],[x1,x2,x3,x4,x5]]
1.3       takayama 1501: [3259] mt_gkz.regular_triangulation(A,W);
1.1       takayama 1502: --snip--
                   1503: [[2,4,5],[2,3,5],[1,2,3]]
1.3       takayama 1504: [3260] mt_gkz.top_standard_pairs(A,W);
1.1       takayama 1505: --snip--
                   1506: [[[[0,0],[0,1]],[2,4,5]],[[[0,0]],[2,3,5]],[[[0,0]],[1,2,3]]]
                   1507:
                   1508: /*
                   1509: This means that the regular triangulation of the configuration matrix A is
                   1510: given by @math{T=\{\{2,4,5\},\{2,3,5\},\{1,2,3\}\}}. The normalized volumes of these simplices
                   1511: are 2,1 and 1. Moreover, the top-dimensional standard pairs are
                   1512: @math{(1,\{2,4,5\}),(\partial_3,\{2,4,5\})}, @math{(1,\{2,3,5\})},@math{(1,\{1,2,3\})}.
                   1513: */
                   1514: @end example
                   1515:
                   1516:
                   1517:
                   1518: @comment --- 参照(リンク)を書く ---
                   1519: @table @t
                   1520: @item Refer to
1.3       takayama 1521: @ref{mt_gkz.leading_terms}.
1.1       takayama 1522: @end table
                   1523: @comment おわり.
                   1524:
                   1525:
                   1526:
                   1527:
                   1528:
                   1529:
                   1530:
                   1531: @comment --- おまじない ---
                   1532: @node Index,,, Top
                   1533: @unnumbered Index
                   1534: @printindex fn
                   1535: @printindex cp
                   1536: @iftex
                   1537: @vfill @eject
                   1538: @end iftex
                   1539: @summarycontents
                   1540: @contents
                   1541: @bye
                   1542: @comment --- おまじない終り ---
                   1543:
                   1544: @comment *********************************************************
                   1545: @comment ********* template
                   1546: @comment **********************************************************
                   1547: @comment --- 個々の関数の説明 ---
                   1548: @comment --- section 名を正確に ---
                   1549: @node mt_gkz.pfaff_eq,,, Pfaff equation for given cocycles
                   1550: @subsection @code{mt_gkz.pfaff_eq}
                   1551: @comment --- 索引用キーワード
                   1552: @findex mt_gkz.pfaff_eq
                   1553:
                   1554: @table @t
                   1555: @item mt_gkz.pfaff_eq(@var{A},@var{Beta},@var{Ap},@var{Rvec},@var{DirX})
                   1556: :: It returns the Pfaff equation for the GKZ system defined by @var{A} and @var{Beta} with respect to cocycles defined by @var{Rvec}.
                   1557: @end table
                   1558:
                   1559: @comment --- 引数の簡単な説明 ---
                   1560: @table @var
                   1561: @item return
                   1562: a list of coefficients of the Pfaff equation with respect to the direction @var{DirX}
                   1563: @item A
                   1564: the matrix A of the GKZ system.
                   1565: @item Beta
                   1566: ...
                   1567: @end table
                   1568:
                   1569: @comment --- ここで関数の詳しい説明 ---
                   1570: @comment --- @itemize〜@end itemize は箇条書き ---
                   1571: @comment --- @bullet は黒点付き ---
                   1572: @itemize @bullet
                   1573: @item
                   1574: The independent variables are @code{x1,x2,x3,...} (@math{x_1, x_2, x_3, \ldots}).
                   1575: @end itemize
                   1576:
                   1577: @comment --- @example〜@end example は実行例の表示 ---
                   1578: Example: Gauss hypergeometric system, see [GM2020] example ??.
                   1579: @example
                   1580: [1883] import("mt_gkz.rr");
                   1581: @end example
                   1582:
                   1583: @comment --- 参照(リンク)を書く ---
                   1584: @table @t
                   1585: @item Refer to
                   1586: @ref{mt_gkz.pfaff_eq}
                   1587: @end table
                   1588: @comment おわり.

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>