=================================================================== RCS file: /home/cvs/OpenXM/src/asir-contrib/packages/doc/sm1/sm1.oxw,v retrieving revision 1.5 retrieving revision 1.7 diff -u -p -r1.5 -r1.7 --- OpenXM/src/asir-contrib/packages/doc/sm1/sm1.oxw 2012/11/28 05:07:31 1.5 +++ OpenXM/src/asir-contrib/packages/doc/sm1/sm1.oxw 2019/09/09 23:39:52 1.7 @@ -1,4 +1,4 @@ -/*$OpenXM: OpenXM/src/asir-contrib/packages/doc/sm1/sm1.oxw,v 1.4 2012/06/11 05:23:52 takayama Exp $ */ +/*$OpenXM: OpenXM/src/asir-contrib/packages/doc/sm1/sm1.oxw,v 1.6 2019/08/31 06:36:28 takayama Exp $ */ /*&C @c DO NOT EDIT THIS FILE @@ -511,7 +511,7 @@ x*dx+1 @findex sm1.gb @findex sm1.gb_d @table @t -@item sm1.gb([@var{f},@var{v},@var{w}]|proc=@var{p},sorted=@var{q},dehomogenize=@var{r}) +@item sm1.gb([@var{f},@var{v},@var{w}]|proc=@var{p},sorted=@var{q},dehomogenize=@var{r},needBack=@var{n}) :: computes the Grobner basis of @var{f} in the ring of differential operators with the variable @var{v}. @item sm1.gb_d([@var{f},@var{v},@var{w}]|proc=@var{p}) @@ -561,6 +561,7 @@ List the polynomials are dehomogenized (,i.e., h is set to 1). @item If you want to have a reduced basis or compute the initial form ideal exactly, execute sm1.auto_reduce(1) before executing this function. +@item When the needBack option @var{n} is 1, it returns the answer is a different format as [groebner basis,initial, gb,1,all,[groebner basis, backward transformation]] @end itemize */ /*&ja @@ -570,7 +571,7 @@ execute sm1.auto_reduce(1) before executing this funct @findex sm1.gb @findex sm1.gb_d @table @t -@item sm1.gb([@var{f},@var{v},@var{w}]|proc=@var{p},sorted=@var{q},dehomogenize=@var{r}) +@item sm1.gb([@var{f},@var{v},@var{w}]|proc=@var{p},sorted=@var{q},dehomogenize=@var{r},needBack=@var{n}) :: @var{v} 上の微分作用素環において @var{f} のグレブナ基底を計算する. @item sm1.gb_d([@var{f},@var{v},@var{w}]|proc=@var{p}) :: @var{v} 上の微分作用素環において @var{f} のグレブナ基底を計算する. 結果を分散多項式のリストで戻す. @@ -613,6 +614,9 @@ execute sm1.auto_reduce(1) before executing this funct 戻り多項式は dehomogenize される (すなわち h に 1 が代入される). @item Reduced グレブナー基底または in_w を計算したいときは, この関数の実行の前に sm1.auto_reduce(1) を実行しておくこと. +@item needBack オプションが 1 の時は, 他の場合とは異なる形式 +[groebner basis, initial, gb,1,all, [groebner basis, backward transformation]] +で答えを戻す. (sm1 の getAttribute を参照) @end itemize */ /*&C @@ -708,6 +712,12 @@ $m' = x^{a'} y^{b'} \partial_x^{c'} \partial_y^{d'}$ [(1)*<<0,0,1,0,0,1,1,0>>+(1)*<<0,1,0,0,0,2,0,0>>+(-1)*<<0,0,0,0,0,1,0,2>>,(1)*< <0,0,1,0,0,0,2,0>>+(1)*<<0,1,0,0,0,1,1,0>>+(-1)*<<0,0,0,0,0,0,1,2>>+(-1)*<<0,0,0 ,0,0,0,0,3>>,(1)*<<0,0,0,0,0,1,0,3>>]]] +@end example +*/ +/*&C +@example +[1834] sm1.gb([[dx^2-x,dx],[x]] | needBack=1); +[[dx,dx^2-x,1],[dx,dx^2,1],gb,1,all,[[dx,dx^2-x,1],[[0,1],[1,0],[-dx,dx^2-x]]]] @end example */