=================================================================== RCS file: /home/cvs/OpenXM/src/asir-contrib/packages/doc/sm1/sm1.oxw,v retrieving revision 1.3 retrieving revision 1.9 diff -u -p -r1.3 -r1.9 --- OpenXM/src/asir-contrib/packages/doc/sm1/sm1.oxw 2010/02/06 00:50:32 1.3 +++ OpenXM/src/asir-contrib/packages/doc/sm1/sm1.oxw 2020/02/25 02:21:53 1.9 @@ -1,4 +1,4 @@ -/*$OpenXM: OpenXM/src/asir-contrib/packages/doc/sm1/sm1.oxw,v 1.2 2008/06/04 01:46:52 takayama Exp $ */ +/*$OpenXM: OpenXM/src/asir-contrib/packages/doc/sm1/sm1.oxw,v 1.8 2019/09/13 05:21:33 takayama Exp $ */ /*&C @c DO NOT EDIT THIS FILE @@ -511,7 +511,7 @@ x*dx+1 @findex sm1.gb @findex sm1.gb_d @table @t -@item sm1.gb([@var{f},@var{v},@var{w}]|proc=@var{p},sorted=@var{q},dehomogenize=@var{r}) +@item sm1.gb([@var{f},@var{v},@var{w}]|proc=@var{p},sorted=@var{q},dehomogenize=@var{r},needBack=@var{n},ring_var=@var{r}) :: computes the Grobner basis of @var{f} in the ring of differential operators with the variable @var{v}. @item sm1.gb_d([@var{f},@var{v},@var{w}]|proc=@var{p}) @@ -559,6 +559,10 @@ List Each polynomial is expressed as a string temporally for now. When the optional variable @var{r} is set to one, the polynomials are dehomogenized (,i.e., h is set to 1). +@item If you want to have a reduced basis or compute the initial form ideal exactly, +execute sm1.auto_reduce(1) before executing this function. +@item When the needBack option @var{n} is 1, it returns the answer is a different format as [groebner basis,initial, gb,1,all,[groebner basis, backward transformation]] +@item The default value of ring_var is ring_var_for_asir. The server ox_sm1 saves the ring structure used to the global this ring_var. See also reduction. @end itemize */ /*&ja @@ -568,7 +572,7 @@ List @findex sm1.gb @findex sm1.gb_d @table @t -@item sm1.gb([@var{f},@var{v},@var{w}]|proc=@var{p},sorted=@var{q},dehomogenize=@var{r}) +@item sm1.gb([@var{f},@var{v},@var{w}]|proc=@var{p},sorted=@var{q},dehomogenize=@var{r},needBack=@var{n},ring_var=@var{r}) :: @var{v} 上の微分作用素環において @var{f} のグレブナ基底を計算する. @item sm1.gb_d([@var{f},@var{v},@var{w}]|proc=@var{p}) :: @var{v} 上の微分作用素環において @var{f} のグレブナ基底を計算する. 結果を分散多項式のリストで戻す. @@ -609,6 +613,12 @@ List いまのところこの多項式は, 文字列で表現される. オプショナル変数 @var{r} がセットされているときは, 戻り多項式は dehomogenize される (すなわち h に 1 が代入される). +@item Reduced グレブナー基底または in_w を計算したいときは, この関数の実行の前に +sm1.auto_reduce(1) を実行しておくこと. +@item needBack オプションが 1 の時は, 他の場合とは異なる形式 +[groebner basis, initial, gb,1,all, [groebner basis, backward transformation]] +で答えを戻す. (sm1 の getAttribute を参照) +@item ring_var オプションの既定値は ring_var_for_asir である. sm1 はこの大域変数名で計算に用いた ring 構造体を保存する. reduction を参照. @end itemize */ /*&C @@ -706,17 +716,23 @@ $m' = x^{a'} y^{b'} \partial_x^{c'} \partial_y^{d'}$ ,0,0,0,0,3>>,(1)*<<0,0,0,0,0,1,0,3>>]]] @end example */ +/*&C +@example +[1834] sm1.gb([[dx^2-x,dx],[x]] | needBack=1); +[[dx,dx^2-x,1],[dx,dx^2,1],gb,1,all,[[dx,dx^2-x,1],[[0,1],[1,0],[-dx,dx^2-x]]]] +@end example +*/ /*&en @table @t @item Reference - @code{sm1.reduction}, @code{sm1.rat_to_p} + @code{sm1.auto_reduce}, @code{sm1.reduction}, @code{sm1.rat_to_p} @end table */ /*&ja @table @t @item 参照 - @code{sm1.reduction}, @code{sm1.rat_to_p} + @code{sm1.auto_reduce}, @code{sm1.reduction}, @code{sm1.rat_to_p} @end table */ @@ -1147,6 +1163,8 @@ the inputs @var{f} and @var{g} are left ideals of D. @findex sm1.reduction @table @t @item sm1.reduction([@var{f},@var{g},@var{v},@var{w}]|proc=@var{p}) +@item sm1.reduction([@var{f},@var{g},@var{v}]|proc=@var{p}) +@item sm1.reduction([@var{f},@var{g}]|proc=@var{p},ring_var=@var{r}) :: @end table @@ -1176,6 +1194,8 @@ in lower order terms. @item The functions sm1.reduction_d(P,F,G) and sm1.reduction_noH_d(P,F,G) are for distributed polynomials. +@item When the arguments are two, the function mod_reduction is called. It uses the ring +structure saved in the global variable ring_var in the ox_sm1 server. @end itemize */ /*&ja @@ -1184,6 +1204,8 @@ are for distributed polynomials. @findex sm1.reduction @table @t @item sm1.reduction([@var{f},@var{g},@var{v},@var{w}]|proc=@var{p}) +@item sm1.reduction([@var{f},@var{g},@var{v}]|proc=@var{p}) +@item sm1.reduction([@var{f},@var{g}]|proc=@var{p},ring_var=@var{r}) :: @end table @@ -1215,6 +1237,9 @@ r/c0 が normal form である. @item 函数 sm1.reduction_d(P,F,G) および sm1.reduction_noH_d(P,F,G) は, 分散多項式用である. +@item 引数が2つの時は mod_reduction 関数が呼ばれる. これは ox_sm1 の大域変数 +ring_var 変数に保存された ring において簡約を行う. auto_reduce(1) が自動でセットされる. +gb を参照. @end itemize */ /*&C @@ -1223,6 +1248,14 @@ sm1.reduction_d(P,F,G) および sm1.reduction_noH_ [x^2+y^2-4,1,[0,0],[y^4-4*y^2+1,x+y^3-4*y]] [260] sm1.reduction([x^2+y^2-4,[y^4-4*y^2+1,x+y^3-4*y],[x,y],[[x,1]]]); [0,1,[-y^2+4,-x+y^3-4*y],[y^4-4*y^2+1,x+y^3-4*y]] + +[1837] XM_debug=0$ S=sm1.syz([ [x^2-1,x^3-1,x^4-1],[x]])$ +[1838] sm1.auto_reduce(1); +1 +[1839] S0=sm1.gb([S[0],[x]]); +[[[-x^2-x-1,x+1,0],[x^2+1,0,-1]],[[0,x,0],[0,0,-1]]] +[1840] sm1.reduction([ [-x^4-x^3-x^2-x,x^3+x^2+x+1,-1], S0[0]]); +[[0,0,0],-1,[[x^2+1,0,0],[1,0,0]],[[-x^2-x-1,x+1,0],[x^2+1,0,-1]]] @end example */ /*&en @@ -2075,8 +2108,13 @@ not bihomogeneous. Algorithm: see "A.Assi, F.J.Castro-Jimenez and J.M.Granger, How to calculate the slopes of a D-module, Compositio Math, 104, 1-17, 1996" -Note that the signs of the slopes are negative, but the absolute values +Note that the signs of the slopes s' are negative, but the absolute values -s' of the slopes are returned. +In other words, when pF+qV is the gap, -s'=q/p is returned. +Note that s=1-1/s' is called the slope in recent literatures. Solutions belongs to O(s). +The number s satisfies 1<= s. +We have r=s-1=-1/s', and kappa=1/r=-s', which is used 1/Gamma(1+m*r) factor and exp(-tau^kappa) +in the Borel and Laplace transformations respectively. */ @@ -2119,8 +2157,14 @@ Algorithm: "A.Assi, F.J.Castro-Jimenez and J.M.Granger, How to calculate the slopes of a D-module, Compositio Math, 104, 1-17, 1996" をみよ. -Slope の本来の定義では, 符号が負となるが, このプログラムは, -Slope の絶対値を戻す. +Slope s' の本来の定義では, 符号が負となるが, このプログラムは, +Slope の絶対値 -s' を戻す. +つまり pF+qV がmicro特性多様体のgapであるとき, -s'=q/p を戻す. +最近の文献では s=1-1/s' を slope と呼んでいる. 解は O(s) に属する. +数 s は 1<= s を満す. +r=s-1=-1/s' および kappa=1/r=-s' である. +これらの数はBorel and Laplace 変換においてそれぞれ 1/Gamma(1+m*r) factor, +exp(-tau^kappa) 項として使われる. */ /*&C