Annotation of OpenXM/src/asir-contrib/packages/doc/tigers/tigers.oxw, Revision 1.1
1.1 ! takayama 1: /* $OpenXM$
! 2:
! 3:
! 4: /*&C
! 5: @node TIGERS Functions,,, Top
! 6: */
! 7: /*&en
! 8: @chapter TIGERS Functions
! 9:
! 10: This chapter describes interface functions for
! 11: tigers ox server @code{ox_sm1_tigers}.
! 12: */
! 13: /*&ja
! 14: @chapter TIGERS $BH!?t(B
! 15:
! 16: $B$3$N>O$G$O(B,
! 17: tigers ox server @code{ox_sm1_tigers}
! 18: $B$K$?$$$9$k%$%s%?%U%'!<%9H!?t$r@bL@$9$k(B.
! 19: */
! 20:
! 21: /*&en
! 22: @menu
! 23: * tigers.tigers::
! 24: @end menu
! 25: @node tigers.tigers,,, TIGERS Functions
! 26: @subsection @code{tigers.tigers}
! 27: @findex tigers.tigers
! 28: @table @t
! 29: @item tigers.tigers(@var{a}|proc=@var{a})
! 30: :: It asks the @code{tigers} server of the descriptor number @var{p}
! 31: to enumerate all Grobner bases associated to the toric variaty
! 32: defined by the matrix @var{a}.
! 33: @end table
! 34:
! 35: @table @var
! 36: @item return
! 37: List
! 38: @item p
! 39: Number
! 40: @item a
! 41: List
! 42: @end table
! 43:
! 44: @itemize @bullet
! 45: @item It asks the @code{tigers} server of the descriptor number @var{p}
! 46: to enumerate all Grobner bases associated to the toric variaty
! 47: defined by the matrix @var{a}.
! 48: @item
! 49: The system tigers is an expert system to enumerate
! 50: all Gr\"obner bases of affine toric ideals.
! 51: In other words, it can be used to determine the state polytope
! 52: of a given affine toric ideal.
! 53: As to a theoretical background, see the book @*
! 54: B.Sturmfels, Grobner bases and Convex Polytopes. @*
! 55: The original tigers is written by Birk Hubert.
! 56: The algorithm used in explained in the paper @*
! 57: B.Huber and R.Thomas, Computing Grobner Fans of Toric Ideals.
! 58: @end itemize
! 59: */
! 60:
! 61: /*&ja
! 62: @menu
! 63: * tigers.tigers::
! 64: @end menu
! 65: @node tigers.tigers,,, TIGERS Functions
! 66: @subsection @code{tigers.tigers}
! 67: @findex tigers.tigers
! 68: @table @t
! 69: @item tigers.tigers(@var{a}|proc=@var{a})
! 70: :: $B$3$NH!?t$O<1JL;R(B @var{p} $B$N(B tigers $B%5!<%P$K(B
! 71: $B9TNs(B @var{a} $B$KIU?o$7$?%H!<%j%C%/%$%G%"%k$N$9$Y$F$N%0%l%V%J4pDl$r(B
! 72: $B7W;;$7$F$/$l$k$h$&$K$?$N$`(B.
! 73: @end table
! 74:
! 75: @table @var
! 76: @item $BLa$jCM(B
! 77: $B%j%9%H(B
! 78: @item p
! 79: $B?t(B
! 80: @item a
! 81: $B%j%9%H(B
! 82: @end table
! 83:
! 84: @itemize @bullet
! 85: @item
! 86: $B$3$NH!?t$O<1JL;R(B @var{p} $B$N(B tigers $B%5!<%P$K(B
! 87: $B9TNs(B @var{a} $B$KIU?o$7$?%H!<%j%C%/%$%G%"%k$N$9$Y$F$N%0%l%V%J4pDl$r(B
! 88: $B7W;;$7$F$/$l$k$h$&$K$?$N$`(B.
! 89: @item
! 90: Tigers $B$O(B $B%"%U%#%s%H!<%j%C%/%$%G%"%k$N(B reduced $B%0%l%V%J4pDl$r(B
! 91: $B$9$Y$F?t$($"$2$k$?$a$N@lMQ$N%W%m%0%i%`$G$"$k(B.
! 92: $B$3$N%W%m%0%i%`$O(B, $B%"%U%#%s%H!<%j%C%/%$%G%"%k$N(B state polytope
! 93: $B$r$-$a$k$?$a$K;H$($k(B.
! 94: $BM}O@E*$J%P%C%/%0%i%&%s%I$K$D$$$F$O(B,
! 95: $BK\(B @*
! 96: B.Sturmfels, Grobner bases and Convex Polytopes @*
! 97: $B$r8+$h(B.
! 98: Tigers $B$O(B Birk Hubert $B$,:n<T$G$"$k(B.
! 99: $B$3$N%W%m%0%i%`$NMxMQ$7$F$$$k%"%k%4%j%:%`$O(B @*
! 100: B.Huber and R.Thomas, Computing Grobner Fans of Toric Ideals @*
! 101: $B$K@bL@$5$l$F$$$k(B.
! 102: @end itemize
! 103: */
! 104:
! 105: /*&C
! 106:
! 107: @example
! 108: [395] A=[[1,1,1,1],[0,1,2,3]]$
! 109: [306] S=tigers.tigers(A)$
! 110: [307] length(S);
! 111: 8
! 112: [308] S[0];
! 113: [[[1,0,1,0],[0,2,0,0]],[[1,0,0,1],[0,1,1,0]],[[0,1,0,1],[0,0,2,0]]]
! 114: [309] S[1];
! 115: [[[1,0,0,1],[0,1,1,0]],[[0,2,0,0],[1,0,1,0]],[[0,1,0,1],[0,0,2,0]]]
! 116:
! 117: @end example
! 118:
! 119: */
! 120:
! 121: /*&en
! 122: In this example, all reduced Grobner bases for the toric ideal
! 123: associated to the matrix @var{A} are stored in @var{S}.
! 124: There are eight distinct Grobner bases of @var{A}.
! 125: [[i_1, i_2, ...],[j_1, j_2, ...]] is a set of exponents of
! 126: two monomials and stands for a binomial.
! 127: For example,
! 128: the S[0] consists of @*
! 129: x1 x3 - x2^2, x1 x4 - x2 x3, x2 x4 - x3^2. @*
! 130: <x1 x3, x1 x4, x2 x4> is the initial ideal of S[0].
! 131:
! 132: */
! 133: /*&ja
! 134: $B$3$NNc$G$O(B, @var{A} $B$KIU?o$7$?%"%U%#%s%H!<%j%C%/%$%G%"%k$N(B
! 135: $B$9$Y$F$N%0%l%V%J4pDl$,(B @var{S} $B$K3JG<$5$l$k(B.
! 136: $B$3$NNc$G$O(B, 8 $B8D$N%0%l%V%J4pDl$,$"$k(B.
! 137: [[i_1, i_2, ...],[j_1, j_2, ...]] $B$OFs$D$N%b%N%_%"%k$N(B
! 138: exponent $B$r$J$i$Y$?$b$N$G$"$j(B, 2 $B9`<0$r$"$i$o$9(B.
! 139: $B$?$H$($P(B,
! 140: S[0] $B$O<!$NB?9`<0$N=89g(B @*
! 141: x1 x3 - x2^2, x1 x4 - x2 x3, x2 x4 - x3^2 @*
! 142: $B$G$"$j(B,
! 143: <x1 x3, x1 x4, x2 x4> $B$,$=$N(B initial ideal $B$G$"$k(B.
! 144:
! 145: */
! 146:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>