[BACK]Return to taka_runge_kutta.rr CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-contrib / packages / src

Annotation of OpenXM/src/asir-contrib/packages/src/taka_runge_kutta.rr, Revision 1.19

1.19    ! takayama    1: /* $OpenXM: OpenXM/src/asir-contrib/packages/src/taka_runge_kutta.rr,v 1.18 2010/09/29 00:33:24 takayama Exp $ */
1.1       takayama    2: /* From misc/200205/runge-kutta.rr */
                      3:
                      4: /* They have not yet been registered in names.rr */
                      5:
                      6: #define DEVAL(a)  eval(a)
                      7: Taka_Runge_kutta_adapted0 = 0$
                      8: Taka_Runge_kutta_epsilon = 0.1$
                      9: Taka_Runge_kutta_H_Upper_Bound = 0.2$
1.3       takayama   10: Taka_Runge_kutta_Make_Larger = 1$ /* Default 1 */
1.1       takayama   11:
                     12: Taka_Runge_kutta_graphic0 = 0$  /* load("glib"); */
                     13: Taka_Runge_kutta_yrange = 10$
                     14:
                     15: Taka_Runge_kutta_save_data = 1$
1.15      takayama   16: Taka_Runge_kutta_debug = 0$
1.1       takayama   17:
1.19    ! takayama   18: extern Tk_rk_deep_eval$
        !            19: Tk_rk_deep_eval=0$
        !            20:
1.1       takayama   21: def taka_runge_kutta_2(F,X,Y,X0,Y0,H,X1) {
                     22:   extern Taka_Runge_kutta_graphic0, Taka_Runge_kutta_yrange, Taka_Runge_kutta_save_data;
                     23:   Alpha =0.5;
                     24:   Beta = 0.5;
                     25:   P = 1; Q = 1;
                     26:
                     27:   Ans = [];
                     28:   if (Taka_Runge_kutta_graphic0) {
                     29:      glib_open();
                     30:      glib_window(X0,Y0[0]-Taka_Runge_kutta_yrange,X1,Y0[0]+Taka_Runge_kutta_yrange);
                     31:   }
                     32:
                     33:   if (type(F) == 5) {
                     34:     N = size(F)[0];
                     35:   }else{
                     36:     N = length(F);
                     37:   }
                     38:   if (type(Y0) != 5) {
                     39:     Y0 = newvect(N,Y0);
                     40:   }
                     41:   Yk = Y0;
                     42:   K1 = newvect(N);
                     43:   K2 = newvect(N);
                     44:   Yk1 = newvect(N);
                     45:   Xk = X0;
                     46:
                     47:   while (Xk < X1) {
                     48:     taka_runge_kutta_replace(K1,F,Y,N,X,Xk,Yk);
                     49:     taka_runge_kutta_replace(K2,F,Y,N,X,Xk+P*H,Yk+Q*H*K1);
                     50:     Yk1 = Yk+H*Alpha*K1+H*Beta*K2;
                     51:     if (Taka_Runge_kutta_save_data) {
                     52:       Ans = cons(cons(Xk,vtol(Yk)),Ans);
                     53:     }
                     54:     print([Xk,Yk[0]]);
                     55:     if (Taka_Runge_kutta_graphic0) glib_line(Xk,Yk[0],Xk+H,Yk1[0]);
                     56:     Xk += H;
                     57:     Yk = Yk1;
                     58:   }
                     59:   return Ans;
                     60: }
                     61:
                     62: def taka_runge_kutta_2_test() {
                     63:    /* Equation of oscilations */
                     64:    F = newvect(2,[y2,-y1]);
                     65:    Y = [y1,y2];
                     66:    taka_runge_kutta_2(F,x,Y,0,[1,0],0.1,15);
                     67: }
                     68:
                     69: def taka_runge_kutta_replace(V,F,Y,N,X,Xk,Rule_vector) {
                     70:   for (I=0; I<N; I++) {
                     71:     V[I] = subst(F[I],X,Xk);
                     72:     for (J=0; J<N; J++) {
                     73:       V[I] = subst(V[I],Y[J],Rule_vector[J]);
                     74:     }
1.9       takayama   75:     V[I] = eval(V[I]*exp(0));
1.1       takayama   76:   }
                     77: }
                     78:
                     79: def taka_runge_kutta_abs(V) {
                     80:   if (type(V) != 5 && type(V) != 4) { /* not a vector */
                     81:     if (ntype(V) == 4) { /* complex number */
                     82:        return V*conj(V);
                     83:     }else{
                     84:       return(V*V);
                     85:     }
                     86:   }
                     87:   if (type(V) == 5) N = size(V)[0];
                     88:   if (type(V) == 4) N = length(V);
                     89:   S = 0;
                     90:   for (I=0; I<N; I++) {
                     91:     if (ntype(V[I]) == 4) /* complex number */
                     92:       S += V[I]*conj(V[I]);
                     93:     else
                     94:       S += V[I]*V[I];
                     95:   }
                     96:   return S;
                     97: }
                     98:
                     99: def taka_runge_kutta_4(F,X,Y,X0,Y0,H,X1) {
                    100: /* N : rank of the ODE. */
                    101:   extern Taka_Runge_kutta_adapted0, Taka_Runge_kutta_epsilon,
                    102:          Taka_Runge_kutta_graphic0, Taka_Runge_kutta_yrange,
1.12      takayama  103:          Taka_Runge_kutta_save_data, Taka_Runge_kutta_debug;
1.1       takayama  104:
1.10      takayama  105:   OneStep = getopt(onestep);
                    106:   if (type(OneStep) <= 0) OneStep = 0; else OneStep = 1;
                    107:   if (OneStep) X1=X0+2*H;
1.14      takayama  108:   if ((H<0) && (X1-X0)>0) error("taka_runge_kutta_4, X1-X0 should be <0");
                    109:   if ((H>0) && (X1-X0)<0) error("taka_runge_kutta_4, X1-X0 should be >0");
1.1       takayama  110:   Ans = [];
                    111:   if (Taka_Runge_kutta_graphic0) {
                    112:      glib_open();
                    113:      glib_window(X0,Y0[0]-Taka_Runge_kutta_yrange,X1,Y0[0]+Taka_Runge_kutta_yrange);
                    114:   }
1.12      takayama  115:   if (X0==X1) return([cons(X0,Y0)]);
1.1       takayama  116:
                    117:   if (type(F) == 5) {
                    118:     N = size(F)[0];
                    119:   }else{
                    120:     N = length(F);
                    121:   }
                    122:   if (type(Y0) != 5) {
                    123:     Y0 = newvect(N,Y0);
                    124:   }
                    125:   Yk = Y0;
                    126:   K1 = newvect(N);
                    127:   K2 = newvect(N);
                    128:   K3 = newvect(N);
                    129:   K4 = newvect(N);
                    130:   Yk1 = newvect(N);
                    131:   Xk = X0;
                    132:
1.14      takayama  133:   while (H<0? Xk > X1: Xk < X1) {
1.1       takayama  134:     taka_runge_kutta_replace(K1,F,Y,N,X,Xk,Yk);
1.3       takayama  135:     taka_runge_kutta_replace(K2,F,Y,N,X,Xk+H*(1/2),Yk+K1*(1/2)*H);
                    136:     taka_runge_kutta_replace(K3,F,Y,N,X,Xk+H*(1/2),Yk+K2*(1/2)*H);
1.1       takayama  137:     taka_runge_kutta_replace(K4,F,Y,N,X,Xk+H,Yk+K3*H);
                    138:     Yk1 = Yk+H*(K1/6+K2/3+K3/3+K4/6);
1.12      takayama  139:     if (Taka_Runge_kutta_debug) print([Xk,Yk[0]]);
1.1       takayama  140:     if (Taka_Runge_kutta_save_data) {
                    141:       Ans = cons(cons(Xk,vtol(Yk)),Ans);
                    142:     }
1.10      takayama  143:     if (OneStep) {
1.12      takayama  144:        return([cons(Xk+H,vtol(Yk1)), cons(Xk,vtol(Yk))]);
1.10      takayama  145:     }
1.1       takayama  146:     if (Taka_Runge_kutta_graphic0) glib_line(Xk,Yk[0],Xk+H,Yk1[0]);
                    147:     if (Taka_Runge_kutta_adapted0 &&
                    148:         (taka_runge_kutta_abs(Yk1-Yk) > Taka_Runge_kutta_epsilon)) {
1.3       takayama  149:       H = H*(1/2);
1.1       takayama  150:     }else{
                    151:       if (Taka_Runge_kutta_adapted0) H = H*2;
                    152:       Xk += H;
                    153:       Yk = Yk1;
                    154:     }
                    155:   }
                    156:   return Ans;
                    157: }
                    158:
                    159: def taka_runge_kutta_4_adaptive(F,X,Y,X0,Y0,H,X1) {
                    160: /* N : rank of the ODE. */
                    161:   extern Taka_Runge_kutta_epsilon,
                    162:          Taka_Runge_kutta_graphic0, Taka_Runge_kutta_yrange,
                    163:          Taka_Runge_kutta_save_data,
                    164:          Taka_Runge_kutta_H_Upper_Bound,
                    165:          Taka_Runge_kutta_Make_Larger;
                    166:
1.5       takayama  167:   Opt = getopt();
1.6       takayama  168:   if (taka_runge_kutta_complex_gt(H,0)) Forward = 1; else Forward = 0;
1.5       takayama  169:   while(Opt != []) {
                    170:     if (car(Opt)[0] == "forward") {
                    171:       Forward = car(Opt)[1];
                    172:     }
                    173:     Opt = cdr(Opt);
                    174:   }
                    175:
1.1       takayama  176:   Ans = [cons(X0,Y0)];
                    177:   if (Taka_Runge_kutta_graphic0) {
                    178:      glib_open();
                    179:      glib_window(X0,Y0[0]-Taka_Runge_kutta_yrange,X1,Y0[0]+Taka_Runge_kutta_yrange);
                    180:   }
                    181:
                    182:   if (type(F) == 5) {
                    183:     N = size(F)[0];
                    184:   }else{
                    185:     N = length(F);
                    186:   }
                    187:   if (type(Y0) != 5) {
                    188:     Y0 = newvect(N,Y0);
                    189:   }
                    190:   Yk = Y0;
                    191:   K1 = newvect(N);
                    192:   K2 = newvect(N);
                    193:   K3 = newvect(N);
                    194:   K4 = newvect(N);
                    195:   Yk1 = newvect(N);
1.3       takayama  196:   Yk2 = newvect(N);
                    197:   Yk3 = newvect(N);
1.1       takayama  198:   Xk = X0;
                    199:
                    200:   while (true) {
1.5       takayama  201:     if (Forward) {
1.6       takayama  202:        /* if (Xk > X1) break; */
                    203:        if (taka_runge_kutta_complex_gt(Xk,X1)) break;
1.5       takayama  204:     } else{
1.6       takayama  205:        /* if (Xk < X1) break; */
                    206:        if (taka_runge_kutta_complex_gt(X1,Xk)) break;
1.1       takayama  207:     }
                    208:     /* Regular step */
                    209:     taka_runge_kutta_replace(K1,F,Y,N,X,Xk,Yk);
1.3       takayama  210:     taka_runge_kutta_replace(K2,F,Y,N,X,Xk+H*(1/2),Yk+K1*(1/2)*H);
                    211:     taka_runge_kutta_replace(K3,F,Y,N,X,Xk+H*(1/2),Yk+K2*(1/2)*H);
1.1       takayama  212:     taka_runge_kutta_replace(K4,F,Y,N,X,Xk+H,Yk+K3*H);
                    213:     Yk1 = Yk+H*(K1/6+K2/3+K3/3+K4/6);
                    214:     /* half step */
                    215:     H2 = H/2;
                    216:     taka_runge_kutta_replace(K1,F,Y,N,X,Xk,Yk);
1.3       takayama  217:     taka_runge_kutta_replace(K2,F,Y,N,X,Xk+H2*(1/2),Yk+K1*(1/2)*H2);
                    218:     taka_runge_kutta_replace(K3,F,Y,N,X,Xk+H2*(1/2),Yk+K2*(1/2)*H2);
                    219:     taka_runge_kutta_replace(K4,F,Y,N,X,Xk+H2,Yk+K3*H2);
1.1       takayama  220:     Yk2 = Yk+H2*(K1/6+K2/3+K3/3+K4/6);
                    221:
1.3       takayama  222:     taka_runge_kutta_replace(K1,F,Y,N,X,Xk+H2,Yk2);
                    223:     taka_runge_kutta_replace(K2,F,Y,N,X,Xk+H2+H2*(1/2),Yk2+K1*(1/2)*H2);
                    224:     taka_runge_kutta_replace(K3,F,Y,N,X,Xk+H2+H2*(1/2),Yk2+K2*(1/2)*H2);
                    225:     taka_runge_kutta_replace(K4,F,Y,N,X,Xk+H2+H2,Yk2+K3*H2);
                    226:     Yk3 = Yk2+H2*(K1/6+K2/3+K3/3+K4/6);
                    227:
                    228:     /* This is a strategy which you may change. */
1.4       takayama  229:     /* WantedPrec = Taka_Runge_kutta_epsilon*taka_runge_kutta_abs(Yk);*/
                    230:     WantedPrec = Taka_Runge_kutta_epsilon;
1.3       takayama  231:
                    232:     Delta1 = DEVAL(taka_runge_kutta_abs(Yk3-Yk1));
                    233:     if (Delta1 != 0) {
                    234:       Habs = DEVAL((WantedPrec/Delta1)^(1/5));
                    235:       Habs = (4/5)*Habs; /* 0.8 = (4/5) is the safety factor */
                    236:     }else{
                    237:       Habs = 2; /* Any large number */
                    238:     }
1.4       takayama  239:     /* print("Habs="+rtostr(Habs)); */
1.3       takayama  240:     if (Habs < 1) { /* Compute again.  */
                    241:       H = H*Habs;
1.1       takayama  242:       print("Changing to Smaller step size: "+rtostr(H));
                    243:       print([Xk,Yk[0]]);
                    244:     }else{  /* Go ahead */
                    245:       Xk += H;
                    246:       Yk = Yk1;
1.3       takayama  247:       if ((H<Taka_Runge_kutta_H_Upper_Bound) && Taka_Runge_kutta_Make_Larger) {
                    248:         H = (Habs*H > Taka_Runge_kutta_H_Upper_Bound?
1.4       takayama  249:              (H/number_abs(H))*Taka_Runge_kutta_H_Upper_Bound :
1.3       takayama  250:              Habs*H);  /* Habs*H2*2 */
1.1       takayama  251:         print("Changing to a larger step size: "+rtostr(H));
                    252:       }
                    253:       print([Xk,Yk[0]]);
                    254:       if (Taka_Runge_kutta_save_data) {
                    255:         Ans = cons(cons(Xk,vtol(Yk)),Ans);
                    256:       }
                    257:       if (Taka_Runge_kutta_graphic0) glib_line(Xk,Yk[0],Xk+H,Yk1[0]);
                    258:     }
                    259:   }
                    260:   return Ans;
                    261: }
                    262:
                    263: /* load("glib"); load("taka_plot.rr"); to execute the functions below. */
                    264: def taka_runge_kutta_4_a_test() {
                    265:    /* exponential function */
                    266:    F = newvect(1,[y1]);
                    267:    Y = [y1];
1.3       takayama  268:    T = taka_runge_kutta_4_adaptive(F,x,Y,0,[1],0.1,5);
                    269:    taka_plot_auto(T);
1.13      takayama  270:    print("Eval by eval(exp(?)) : ",0); print([T[0][0],eval(exp(T[0][0]))]);
1.3       takayama  271: }
                    272:
                    273: def taka_runge_kutta_4_a2_test() {
                    274:    /* Equation of oscilations */
                    275:    F = newvect(2,[y2,-y1]);
                    276:    Y = [y1,y2];
                    277:    T = taka_runge_kutta_4_adaptive(F,x,Y,0,[1,0],0.1,15);
1.1       takayama  278:    taka_plot_auto(T);
1.13      takayama  279:    print("Eval by eval((?)) : ",0); print([T[0][0],eval(cos(T[0][0]))]);
1.1       takayama  280: }
                    281:
                    282: def taka_runge_kutta_4_test() {
                    283:    /* Equation of oscilations */
                    284:    F = newvect(2,[y2,-y1]);
                    285:    Y = [y1,y2];
                    286:    T=taka_runge_kutta_4(F,x,Y,0,[1,0],0.1,15);
                    287:    print(T);
                    288:    taka_plot_auto(T);
                    289: }
                    290:
1.14      takayama  291: def taka_runge_kutta_4_test2() {
                    292:    /* Equation of oscilations */
                    293:    F = newvect(2,[y2,-y1]);
                    294:    Y = [y1,y2];
                    295:    T=taka_runge_kutta_4(F,x,Y,15,[1,0],-0.1,0);
                    296:    print(T);
                    297:    taka_plot_auto(T);
                    298: }
                    299:
1.15      takayama  300: def taka_runge_kutta_replace_linear(V,F,Y,N,X,Xk,Rule_vector) {
1.19    ! takayama  301: extern Tk_rk_deep_eval;
        !           302:   if (Tk_rk_deep_eval) {
        !           303:     V1=base_replace(F,[[X,Xk]]);
        !           304:   }else{
        !           305:     V1=base_replace_n(F,[[X,Xk]]);
        !           306:   }
1.15      takayama  307:   V1=V1*Rule_vector;
                    308:   for (I=0; I<N; I++) {
1.19    ! takayama  309:     if (Tk_rk_deep_eval)
        !           310:       V[I] = eval(V1[I]*exp(0));
        !           311:     else
        !           312:       V[I] = V1[I];
1.15      takayama  313:   }
                    314: }
                    315:
                    316: /* Y is a dummy */
                    317: def taka_runge_kutta_4_linear(F,X,Y,X0,Y0,H,X1) {
                    318: /* N : rank of the ODE. */
                    319:   extern Taka_Runge_kutta_adapted0, Taka_Runge_kutta_epsilon,
                    320:          Taka_Runge_kutta_graphic0, Taka_Runge_kutta_yrange,
                    321:          Taka_Runge_kutta_save_data, Taka_Runge_kutta_debug;
                    322:
                    323:   OneStep = getopt(onestep);
                    324:   if (type(OneStep) <= 0) OneStep = 0; else OneStep = 1;
                    325:   if (OneStep) X1=X0+2*H;
                    326:   if ((H<0) && (X1-X0)>0) error("taka_runge_kutta_4_linear, X1-X0 should be <0");
                    327:   if ((H>0) && (X1-X0)<0) error("taka_runge_kutta_4_linear, X1-X0 should be >0");
                    328:   Ans = [];
                    329:   if (Taka_Runge_kutta_graphic0) {
                    330:      glib_open();
                    331:      glib_window(X0,Y0[0]-Taka_Runge_kutta_yrange,X1,Y0[0]+Taka_Runge_kutta_yrange);
                    332:   }
                    333:   if (X0==X1) return([cons(X0,Y0)]);
                    334:
                    335:   if (type(F) == 4) {
                    336:     F=newmat(length(F),length(F[0]),F);
                    337:   }
                    338:   N = size(F)[0];
                    339:
                    340:   if (type(Y0) != 5) {
                    341:     Y0 = newvect(N,Y0);
                    342:   }
                    343:   Yk = Y0;
                    344:   K1 = newvect(N);
                    345:   K2 = newvect(N);
                    346:   K3 = newvect(N);
                    347:   K4 = newvect(N);
                    348:   Yk1 = newvect(N);
                    349:   Xk = X0;
                    350:
                    351:   while (H<0? Xk > X1: Xk < X1) {
                    352:     taka_runge_kutta_replace_linear(K1,F,Y,N,X,Xk,Yk);
                    353:     taka_runge_kutta_replace_linear(K2,F,Y,N,X,Xk+H*(1/2),Yk+K1*(1/2)*H);
                    354:     taka_runge_kutta_replace_linear(K3,F,Y,N,X,Xk+H*(1/2),Yk+K2*(1/2)*H);
                    355:     taka_runge_kutta_replace_linear(K4,F,Y,N,X,Xk+H,Yk+K3*H);
                    356:     Yk1 = Yk+H*(K1/6+K2/3+K3/3+K4/6);
                    357:     if (Taka_Runge_kutta_debug) print([Xk,Yk[0]]);
                    358:     if (Taka_Runge_kutta_save_data) {
                    359:       Ans = cons(cons(Xk,vtol(Yk)),Ans);
                    360:     }
                    361:     if (OneStep) {
                    362:        return([cons(Xk+H,vtol(Yk1)), cons(Xk,vtol(Yk))]);
                    363:     }
                    364:     if (Taka_Runge_kutta_graphic0) glib_line(Xk,Yk[0],Xk+H,Yk1[0]);
                    365:     if (Taka_Runge_kutta_adapted0 &&
                    366:         (taka_runge_kutta_abs(Yk1-Yk) > Taka_Runge_kutta_epsilon)) {
                    367:       H = H*(1/2);
                    368:     }else{
                    369:       if (Taka_Runge_kutta_adapted0) H = H*2;
                    370:       Xk += H;
                    371:       Yk = Yk1;
                    372:     }
                    373:   }
                    374:   return Ans;
                    375: }
                    376:
                    377: def taka_runge_kutta_4_linear_test() {
                    378:    /* Airy equation y''-x y = 0
                    379:     [evalf(AiryAi(0)),evalf(subs(x=0,diff(AiryAi(x),x)))];
                    380:     Y0=[0.3550280540, -0.2588194038]
                    381:     evalf(AiryAi(-5)); --> 0.35076
                    382:    */
                    383:    F = [[0,1],[x,0]];
                    384:    Y = [y1,y2];
                    385:    Y0=[0.3550280540, -0.2588194038];
                    386:    T=taka_runge_kutta_4_linear(F,x,Y,0,Y0,-0.1,-5);
                    387:    print(T);
                    388:    taka_plot_auto(T);
                    389:    T2=taka_runge_kutta_4([y2,x*y1],x,Y,0,Y0,-0.1,-5);
                    390:    print("AiryAi(-5) --> 0.35076");
                    391:    return([T[0],T2[0]]);
                    392: }
                    393:
                    394: /*
                    395: def base_replace_n(F,R) { return base_replace(F,R); }
                    396: */
1.6       takayama  397:
                    398: /* cf. asir2000/engine/cplx.c  int cmpcplx(a,b),
                    399:        which does not compare the real part and imaginary part.
                    400:        Instead, it compares NID (number id)
                    401: */
                    402: def taka_runge_kutta_complex_gt(A,B) {
                    403:   Ar = number_real_part(A); Ai = number_imaginary_part(A);
                    404:   Br = number_real_part(B); Bi = number_imaginary_part(B);
                    405:   if (Ar > Br) return 1;
                    406:   else if (Ar < Br) return 0;
                    407:   if (Ai > Bi) return 1;
                    408:   else if (Ai < Bi) return 0;
                    409:   return 0;
                    410: }
1.1       takayama  411:
                    412: Loaded_taka_runge_kutta=1$
1.7       takayama  413:
                    414: /* cf. misc-2003/09/neval/ellip.*  */
                    415: /* runge_kutta_4 is still buggy for complex numbers */
                    416:
1.16      takayama  417: module tk_rk;
                    418: localf taka_minus;
                    419: localf taka_runge_kutta_reverse ;
                    420: localf taka_runge_kutta_4a;
                    421: localf taka_runge_kutta_4a_linear;
                    422: localf test4 ;
                    423: localf test4b ;
1.18      takayama  424: localf runge_kutta_4;
                    425: localf runge_kutta_4_linear;
1.16      takayama  426: def taka_minus(Ob) {
1.17      takayama  427:   if (type(Ob) != 4) return(-Ob);
                    428:   else return map(taka_minus,Ob);
1.16      takayama  429: }
                    430: def taka_runge_kutta_reverse(A) {
                    431:   B=[];
                    432:   for (; length(A) != 0; A=cdr(A)) {
                    433:      T=car(A);
                    434:      B=cons(cons(-T[0],cdr(T)),B);
                    435:   }
                    436:   return reverse(B);
                    437: }
                    438: def taka_runge_kutta_4a(FF,X0,Y,S0,Ys,T0,H) {
                    439:   if (T0 < S0) {
                    440:     /* opposite direction */
                    441:     return taka_runge_kutta_reverse(
                    442:       taka_runge_kutta_4a(map(taka_minus,base_replace(FF,[[X0,-X0]])),X0,Y,-S0,Ys,-T0,H));
                    443:   }
                    444:   if (H >= T0-S0) {
                    445:     A=taka_runge_kutta_4(FF,X0,Y,S0,Ys,T0-S0,0 | onestep=1);
                    446:   }else{
                    447:     A=taka_runge_kutta_4(FF,X0,Y,S0,Ys,H,T0);
                    448:     T=A[0];
                    449:     if (T0-T[0] > 0) {
                    450:       B=taka_runge_kutta_4(FF,X0,Y,T[0],cdr(T),T0-T[0],0 | onestep=1);
                    451:       T=B[0];
                    452:       A=cons(T,A);
                    453:     }
                    454:  }
                    455:  return(A);
                    456: }
1.18      takayama  457: def runge_kutta_4(FF,X0,Y,S0,Ys,T0,H) {
                    458:    return taka_runge_kutta_4a(FF,X0,Y,S0,Ys,T0,H);
                    459: }
                    460: def runge_kutta_4_linear(FF,X0,Y,S0,Ys,T0,H) {
                    461:    return taka_runge_kutta_4a_linear(FF,X0,Y,S0,Ys,T0,H);
                    462: }
1.16      takayama  463:
                    464: def taka_runge_kutta_4a_linear(FF,X0,Y,S0,Ys,T0,H) {
1.17      takayama  465:   if (T0 < S0) {
                    466:     /* opposite direction */
                    467:     return taka_runge_kutta_reverse(
                    468:       taka_runge_kutta_4a_linear(map(taka_minus,base_replace(FF,[[X0,-X0]])),X0,Y,-S0,Ys,-T0,H));
                    469:   }
1.16      takayama  470:   if (H >= T0-S0) {
                    471:     A=taka_runge_kutta_4_linear(FF,X0,Y,S0,Ys,T0-S0,0 | onestep=1);
                    472:   }else{
                    473:     A=taka_runge_kutta_4_linear(FF,X0,Y,S0,Ys,H,T0);
                    474:     T=A[0];
                    475:     if (T0-T[0] > 0) {
                    476:       B=taka_runge_kutta_4_linear(FF,X0,Y,T[0],cdr(T),T0-T[0],0 | onestep=1);
                    477:       T=B[0];
                    478:       A=cons(T,A);
                    479:     }
                    480:  }
                    481:  return(A);
                    482: }
                    483:
                    484: /* equation of oscilation */
                    485: def test4() {
1.18      takayama  486:   A=runge_kutta_4([y1,-y0],x,[y0,y1],0,[1,0],3.14*2,0.1);
1.16      takayama  487:   taka_plot_auto(A);
                    488:   return(A);
                    489: }
                    490:
                    491: def test4b() {
                    492:   A=taka_runge_kutta_4a([y1,-y0],x,[y0,y1],3.14,[-1,0],0,0.1);
                    493:   taka_plot_auto(A);
                    494:   return(A);
                    495: }
                    496: endmodule;
                    497:
1.7       takayama  498: import("taka_plot.rr")$
                    499: pari(allocatemem,10^7)$
                    500: module rktest;
                    501: localf re$
                    502: localf re2$
                    503: localf im$
                    504: localf im2$
                    505: localf tryA$
                    506: localf tryA2$
                    507: localf geq$
                    508: localf test1$
                    509:
                    510: def re(L) {
                    511:   return map(re2,L);
                    512: }
                    513: def re2(P) {
                    514:   return map(number_real_part,P);
                    515: }
                    516: def im(L) {
                    517:   return map(im2,L);
                    518: }
                    519: def im2(P) {
                    520:   return map(number_imaginary_part,P);
                    521: }
                    522:
                    523: def geq() {
1.8       takayama  524:   L=x*(1-x)*dx^2+(c-(a+b+1)*x)*dx-a*b;
1.7       takayama  525:   L=base_replace(L,[[a,1/2],[b,1/2],[c,1]]);
                    526:
1.8       takayama  527:   L2 = -((c-(a+b+1)*x)*y2-a*b*y1)/(x*(1-x));
1.7       takayama  528:   L2=base_replace(L2,[[a,1/2],[b,1/2],[c,1]]);
                    529:   return [ y2, L2];
                    530: }
                    531: def tryA() {
                    532:   LL = geq();
                    533:   A = taka_runge_kutta_4_adaptive(
                    534:        LL,
                    535:        x,[y1,y2],
                    536:        0.5+0.5*@i,[-6.78383-1.28991*@i, -1.51159-1.7935*@i],
                    537:        (3-@i)*0.0005, 2.0);
                    538:   taka_plot_auto(re(A));
                    539:   return A;
                    540: }
                    541: def tryA2() {
                    542:   LL = geq();
                    543:   A = taka_runge_kutta_4(
                    544:        LL,
                    545:        x,[y1,y2],
                    546:        0.5+0.5*@i,[-6.78383-1.28991*@i, -1.51159-1.7935*@i],
                    547:        (3-@i)*0.0005, 1.0);
                    548:   taka_plot_auto(re(A));
                    549:   return A;
                    550: }
                    551:
                    552: def test1() {
                    553:   A=tryA2();
                    554:   B=A[100];
                    555:   print(B);
1.10      takayama  556: /* cf. misc-2008/A2/misc/ellip2.m
1.7       takayama  557:   p2 = 0.5+0.5*I --> [-6.78383-1.28991*@i, -1.51159-1.7935*@i].
1.8       takayama  558:   p2 = 0.8495+0.3835*I;
1.7       takayama  559: Print["-------------------"];
                    560: Print[p2];
                    561: Print[N[-2*Gamma[1/2]^2*Hypergeometric2F1[1/2,1/2,1,z] /. {z->p2}]]
                    562: Print[N[D[-2*Gamma[1/2]^2*Hypergeometric2F1[1/2,1/2,1,z],z] /. {z->p2}]]
                    563: */
1.8       takayama  564:  print("math:  [0.8495+0.3835*I, -7.64079 - 2.0799*I, -1.16364 - 4.14709*I] ");
1.10      takayama  565:  print("It was Buggy tryA2() and tryA() --> fixed. see log of 1.8");
1.7       takayama  566: }
                    567:
                    568: endmodule;
                    569:
1.1       takayama  570: end$

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>