Annotation of OpenXM/src/asir-contrib/testing/noro/module_syz.rr, Revision 1.3
1.1 noro 1: module newsyz;
2:
1.3 ! noro 3: localf module_syz;
! 4: localf simplify_syz, icont, mod, remove_cont,ordcheck;
! 5: localf complsb, complsb_sd, sortlsb, find_pos, find_pos, reduce, lres_setup, dpm_sort1, comp_pos;
! 6: localf fres,minres,sres,minsres,lres, create_base_ord, simplify_k, simplify_by_k, remove_k, remove_k1, extract_nonzero;
! 7: localf nonzero, phi, syz_check, renumber_pos, compress, compress_h;
! 8: localf syz_check0,phi0,todpmlist,dpmlisttollist;
1.1 noro 9:
10: /* F : a list of (lists or polynomials),
11: V : a variable list, H >1=> over GF(H), H=0,1=> over Q
12: O : term order
13: return: [GS,G]
14: GS : a GB of syz(F) wrt [1,O] (POT), G: a GB of F wrt [1,O]
15: */
16:
1.3 ! noro 17: // return [dpmlist F,rank N]
! 18: def todpmlist(F,V)
1.1 noro 19: {
1.3 ! noro 20: K = length(F);
! 21: for ( I = 0; I < K; I++ ) if ( F[I] ) break;
! 22: if ( I == K ) return [];
! 23: if ( type(F[I]) <= 2 ) {
! 24: // F is a polynimial list
! 25: F = map(dp_ptod,F,V);
! 26: F = map(dpm_dptodpm,F,1);
! 27: N = 1;
! 28: } else if ( type(F[I]) == 9 ) {
! 29: // F is a dpoly list
! 30: F = map(dpm_dptodpm,F,1);
! 31: N = 1;
! 32: } else if ( type(F[I]) == 4 ) {
! 33: // F is a list of poly lists
! 34: N = length(F[0]);
! 35: F = map(dpm_ltod,F,V);
! 36: } else if ( type(F[I]) == 26 ) {
! 37: // F is a DPM list
! 38: for ( N = 0, T = F; T != []; T = cdr(T) ) {
! 39: for ( A = car(T); A; A = dpm_rest(A) ) {
! 40: N1 = dpm_hp(A);
! 41: if ( N1 > N ) N = N1;
! 42: }
! 43: }
! 44: } else {
! 45: error("todpmlist: arugument type is invalid.");
! 46: }
! 47: return [F,N];
! 48: }
! 49:
! 50: def module_syz(F,V,H,Ord)
! 51: {
! 52: if ( type(Weyl=getopt(weyl)) == -1 ) Weyl = 0;
! 53: if ( type(DP=getopt(dp)) == -1 ) DP = 0;
! 54: if ( type(F4=getopt(f4)) == -1 ) F4 = 0;
! 55: dp_ord(Ord);
! 56: K = length(F);
! 57: for ( I = 0; I < K; I++ ) if ( F[I] ) break;
! 58: if ( I == K ) return [[],[],[]];
! 59: L = todpmlist(F,V);
! 60: F = L[0]; N = L[1];
! 61: dp_ord([1,Ord]);
! 62: B = [];
! 63: for ( I = 0; I < K; I++ ) {
! 64: B = cons(F[I]+dpm_dptodpm(dp_ptod(1,V),N+I+1),B);
! 65: }
! 66: B = reverse(B);
! 67: if ( Weyl )
! 68: G = nd_weyl_gr(B,V,0,[1,Ord]|dp=1,homo=H);
! 69: else if ( F4 ) {
! 70: // G = nd_f4(B,V,0,[1,Ord]|dp=1,homo=H,nora=1);
! 71: Ind = 0;
! 72: while ( 1 ) {
! 73: G = nd_f4_trace(B,V,H,-lprime(Ind),[1,Ord]|dp=1);
! 74: if ( G ) break;
! 75: else Ind++;
! 76: }
! 77: } else
! 78: G = nd_gr(B,V,0,[1,Ord]|dp=1,homo=H);
! 79: G0 = []; S0 = []; Gen0 = [];
! 80: for ( T = G; T != []; T = cdr(T) ) {
! 81: H = car(T);
! 82: if ( dpm_hp(H) > N ) {
! 83: S0 = cons(dpm_shift(H,N),S0);
! 84: } else {
! 85: L = dpm_split(H,N);
! 86: G0 = cons(L[0],G0);
! 87: Gen0 = cons(dpm_shift(L[1],N),Gen0);
1.1 noro 88: }
1.3 ! noro 89: }
! 90: #if 0
! 91: S0 = reverse(S0); G0 = reverse(G0); Gen0 = reverse(Gen0);
! 92: #endif
! 93: if ( !DP ) {
! 94: S0 = map(dpm_dtol,S0,V); G0 = map(dpm_dtol,G0,V); Gen0 = map(dpm_dtol,Gen0,V);
! 95: }
! 96: return [S0,G0,Gen0];
! 97: }
! 98:
! 99: def fres(F,V,H,O)
! 100: {
! 101: if ( type(Weyl=getopt(weyl)) == -1 ) Weyl = 0;
! 102: if ( type(F4=getopt(f4)) == -1 ) F4 = 0;
! 103: if ( type(DP=getopt(dp)) == -1 ) DP = 0;
! 104: L = todpmlist(F,V); F = L[0];
! 105: R = [F];
! 106: while ( 1 ) {
! 107: if ( Weyl )
! 108: L = module_syz(car(R),V,H,O|weyl=1,dp=1,f4=F4);
! 109: else
! 110: L = module_syz(car(R),V,H,O|dp=1,f4=F4);
! 111: L = L[0];
! 112: L = ordcheck(L,V);
! 113: if ( L == [] ) {
! 114: if ( DP ) return R;
! 115: else return map(dpmlisttollist,R,V);
! 116: }
! 117: R = cons(L,R);
! 118: }
! 119: }
! 120:
! 121: def minres(F,V,H,O)
! 122: {
! 123: if ( type(Weyl=getopt(weyl)) == -1 ) Weyl = 0;
! 124: if ( type(F4=getopt(f4)) == -1 ) F4 = 0;
! 125: if ( type(DP=getopt(dp)) == -1 ) DP = 0;
! 126: L = todpmlist(F,V); F = L[0];
! 127: R = [F];
! 128: while ( 1 ) {
! 129: if ( Weyl )
! 130: L = module_syz(car(R),V,H,O|weyl=1,dp=1,f4=F4);
! 131: else
! 132: L = module_syz(car(R),V,H,O|dp=1,f4=F4);
! 133: L = L[0];
! 134: L = ordcheck(L,V);
! 135: if ( L == [] ) break;
! 136: S = dpm_simplify_syz(L,R[0]);
! 137: if ( S[0] == [] && S[1] == [] ) {
! 138: R = cdr(R); break;
! 139: }
! 140: R = append([S[0],S[1]],cdr(R));
! 141: if ( R[0] == [] ) {
! 142: R = cdr(R); break;
! 143: }
! 144: }
! 145: if ( DP ) return R;
! 146: else return map(dpmlisttollist,R,V);
! 147: }
! 148:
! 149: def dpmlisttollist(F,V)
! 150: {
! 151: return map(dpm_dtol,F,V);
! 152: }
! 153:
! 154: def sres(F,V,H,Ord)
! 155: {
! 156: if ( type(DP=getopt(dp)) == -1 ) DP = 0;
! 157: dpm_set_schreyer(0);
! 158: dp_ord(Ord);
! 159: K = length(F);
! 160: K = length(F);
! 161: for ( I = 0; I < K; I++ ) if ( F[I] ) break;
! 162: if ( I == K ) return [[],[],[]];
! 163: L = todpmlist(F,V);
! 164: F = L[0]; N = L[1];
! 165: G = nd_gr(F,V,H,[0,Ord]|dp=1);
! 166: G = reverse(G);
! 167: R = [G];
! 168: dp_ord([0,Ord]);
! 169: while ( 1 ) {
! 170: S = dpm_schreyer_base(R[0]);
! 171: print(["length",length(S)]);
! 172: if ( S == [] ) break;
! 173: else R = cons(S,R);
! 174: }
! 175: dp_ord([0,0]);
! 176: if ( DP ) return R;
! 177: else return map(dpmlisttollist,R,V);
! 178: }
! 179:
! 180: def minsres(F,V,H,Ord)
! 181: {
! 182: if ( type(DP=getopt(dp)) == -1 ) DP = 0;
! 183: R = sres(F,V,H,Ord|dp=1);
! 184: R = ltov(R);
! 185: M = length(R);
! 186: for ( I = 0; I < M; I++ ) R[I] = map(dpm_sort,R[I]);
! 187: R = vtol(R);
! 188: for ( T = R, U = []; length(T) >= 2; ) {
! 189: Z = dpm_simplify_syz(T[0],T[1]);
! 190: U = cons(Z[0],U);
! 191: T = cons(Z[1],cdr(cdr(T)));
! 192: }
! 193: U = cons(T[0],U);
! 194: if ( DP ) return U;
! 195: else return map(dpmlisttollist,U,V);
! 196: }
! 197:
! 198: def ordcheck(D,V)
! 199: {
! 200: B=map(dpm_dtol,D,V);
! 201: dp_ord([1,0]);
! 202: D = map(dpm_sort,D);
! 203: D1 = map(dpm_ltod,B,V);
! 204: if ( D != D1 )
! 205: print("afo");
! 206: return D1;
! 207: }
! 208:
! 209: def complsb(A,B)
! 210: {
! 211: AL = A[3]; AD = A[4];
! 212: BL = B[3]; BD = B[4];
! 213: if ( AD > BD ) return 1;
! 214: else if ( AD < BD ) return -1;
! 215: else if ( AL < BL ) return 1;
! 216: else if ( AL > BL ) return -1;
! 217: else return 0;
! 218: }
! 219:
! 220: def complsb_sd(A,B)
! 221: {
! 222: AL = A[3]; AD = A[4];
! 223: BL = B[3]; BD = B[4];
! 224: if ( AD-AL > BD-BL ) return 1;
! 225: else if ( AD-AL < BD-BL ) return -1;
! 226: else if ( AL > BL ) return 1;
! 227: else if ( AL < BL ) return -1;
! 228: else return 0;
! 229: }
! 230:
! 231: def sortlsb(A)
! 232: {
! 233: S = [];
! 234: N = length(A);
! 235: for ( I = 0; I < N; I++ ) S = append(cdr(vtol(A[I])),S);
! 236: // S = qsort(S,newsyz.complsb_sd);
! 237: S = qsort(S,newsyz.complsb);
! 238: return S;
! 239: }
! 240: /* D=[in,sum,deg,lev,ind] */
! 241: /* B=[0 B1 B2 ...] */
! 242: /* C=[0 C1 C2 ...] */
! 243: /* H=[0 H1 H2 ...] */
! 244: /* Z=[0 Z1 Z2 ...] */
! 245: /* Zi=[0 L1 L2 ...] */
! 246: /* Lj=[I1,I2,...] */
! 247: /* One=<<0,...,0>> */
! 248:
! 249: extern Rtime,Stime,Ptime$
! 250:
! 251: // B is sorted wrt positon
! 252: def find_pos(HF,B)
! 253: {
! 254: Len = length(B);
! 255: Pos = dpm_hp(HF);
! 256: First = 0; Last = Len-1;
! 257: if ( B[First][0] == HF ) return B[First][2];
! 258: if ( B[Last][0] == HF ) return B[Last][2];
! 259: while ( 1 ) {
! 260: Mid = idiv(First+Last,2);
! 261: PosM = dpm_hp(B[Mid][0]);
! 262: if ( PosM == Pos ) break;
! 263: else if ( PosM < Pos )
! 264: First = Mid;
! 265: else
! 266: Last = Mid;
! 267: }
! 268: for ( I = Mid; I < Len && dpm_hp(B[I][0]) == Pos; I++ )
! 269: if ( HF == B[I][0] ) return B[I][2];
! 270: for ( I = Mid-1; I >= 1 && dpm_hp(B[I][0]) == Pos; I-- )
! 271: if ( HF == B[I][0] ) return B[I][2];
! 272: error("find_pos : cannot happen");
! 273: }
! 274:
! 275: def reduce(D,B,Bpos,C,H,Z,K,Kind,G,One,Top)
! 276: {
! 277: M = D[0]; Ind = D[2]; I = D[3];
! 278: if ( I == 1 ) {
! 279: C[I][Ind] = G[Ind];
! 280: dpm_insert_to_zlist(Z[1],dpm_hp(G[Ind]),Ind);
! 281: H[I][Ind] = G[Ind];
! 282: } else {
! 283: /* M is in F(I-1) => phi(M) is in F(I-2) */
! 284: /* reduction in F(I-2) */
! 285: T0 = time()[0];
! 286: dpm_set_schreyer_level(I-2);
! 287: CI = C[I-1]; ZI = Z[I-1]; BI = B[I-1]; BposI = Bpos[I-1];
! 288: Len = size(CI);
! 289: T=dpm_hc(M); EM=dpm_hp(M);
! 290: XiM = T*dpm_ht(CI[EM]);
! 291: EXiM = dpm_hp(XiM);
! 292: ZIE = ZI[EXiM];
! 293: for ( ZIE = ZI[EXiM]; ZIE != []; ZIE = cdr(ZIE) ) {
! 294: J = car(ZIE);
! 295: if ( J > EM && dpm_redble(XiM,dpm_ht(CI[J])) ) break;
! 296: }
! 297: Ptime += time()[0]-T0;
! 298: T0 = time()[0];
! 299: QR = dpm_sp_nf(CI,ZI,EM,J|top=Top);
! 300: Rtime += time()[0]-T0;
! 301: G = QR[0]; F = QR[1];
! 302: if ( F ) {
! 303: HF = dpm_ht(F); EF = dpm_hp(HF);
! 304: /* find HF in B[I-1] */
! 305: T0 = time()[0];
! 306: J = find_pos(HF,BposI);
! 307: Stime += time()[0]-T0;
! 308: /* F=Ret[0]*Ret[1] */
! 309: Ret = dpm_remove_cont(F);
! 310: CI[J] = Ret[1];
! 311: Kind[I-1][J] = 2;
! 312: dpm_insert_to_zlist(ZI,EF,J);
! 313: dpm_set_schreyer_level(I-1);
! 314: Tail = -Ret[0]*dpm_dptodpm(One,J);
! 315: G += Tail;
! 316: dpm_set_schreyer_level(0);
! 317: Ret = dpm_remove_cont(G); G = Ret[1];
! 318: C[I][Ind] = G;
! 319: Kind[I][Ind] = 1;
! 320: K[I] = cons([G,Tail],K[I]);
! 321: dpm_insert_to_zlist(Z[I],EM,Ind);
! 322: /* level <- 0 */
! 323: BI[J][3] = 0;
! 324: } else {
! 325: Kind[I][Ind] = 0;
! 326: Ret = dpm_remove_cont(G); G = Ret[1];
! 327: H[I][Ind] = G;
! 328: C[I][Ind] = G;
! 329: dpm_insert_to_zlist(Z[I],EM,Ind);
! 330: }
! 331: }
! 332: }
! 333:
! 334: def lres_setup(F,V,H,Ord)
! 335: {
! 336: dpm_set_schreyer(0);
! 337: dp_ord(Ord);
! 338: K = length(F);
! 339: if ( type(F[0]) <= 2 ) {
! 340: // F is a polynimial list
! 341: F = map(dp_ptod,F,V);
! 342: F = map(dpm_dptodpm,F,1);
! 343: N = 1;
! 344: } else if ( type(F[0]) == 9 ) {
! 345: // F is a dpoly list
! 346: F = map(dpm_dptodpm,F,1);
! 347: N = 1;
! 348: } else if ( type(F[0]) == 4 ) {
! 349: // F is a list of poly lists
! 350: N = length(F[0]);
! 351: F = map(dpm_ltod,F,V);
! 352: } else if ( type(F[0]) == 26 ) {
! 353: // F is a DPM list
! 354: for ( N = 0, T = F; T != []; T = cdr(T) ) {
! 355: for ( A = car(T); A; A = dpm_rest(A) ) {
! 356: N1 = dpm_hp(A);
! 357: if ( N1 > N ) N = N1;
! 358: }
! 359: }
! 360: } else {
! 361: error("lres_setup: arugument type is invalid.");
! 362: }
! 363: G = nd_gr(F,V,H,[0,Ord]|dp=1);
! 364: G = reverse(G);
! 365: dp_ord([0,Ord]);
! 366: One = dp_ptod(1,V);
! 367: return [G,One];
! 368: }
! 369:
! 370: def dpm_sort1(L)
! 371: {
! 372: return [dpm_sort(L[0]),L[1]];
! 373: }
! 374:
! 375: def comp_pos(A,B)
! 376: {
! 377: PA = dpm_hp(A[0]); PB = dpm_hp(B[0]);
! 378: if ( PA > PB ) return 1;
! 379: else if ( PA < PB ) return -1;
! 380: else return 0;
! 381: }
! 382:
! 383: def lres(F,V,H,Ord)
! 384: {
! 385: T0 = time();
! 386: if ( type(Top=getopt(top)) == -1 ) Top = 0;
! 387: if ( type(NoSimpK=getopt(nosimpk)) == -1 ) NoSimpK = 0;
! 388: if ( type(NoPreProj=getopt(nopreproj)) == -1 ) NoPreProj = 0;
! 389: Rtime = Stime = Ptime = 0;
! 390: L = lres_setup(F,V,H,Ord);
! 391: G = L[0];
! 392: One = L[1];
! 393: F = dpm_schreyer_frame(G);
! 394: G = ltov(cons(0,L[0]));
! 395: F = reverse(F);
! 396: F = ltov(F);
! 397: N = length(F);
! 398: for ( I = 0; I < N; I++ ) {
! 399: FI = F[I]; FI[0] = [];
! 400: FI = map(ltov,FI);
! 401: F[I] = FI;
! 402: }
! 403: R = sortlsb(F);
! 404: B = vector(N+1);
! 405: Bpos = vector(N+1);
! 406: C = vector(N+1);
! 407: H = vector(N+1);
! 408: Z = vector(N+1);
! 409: K = vector(N+1);
! 410: L = vector(N+1);
! 411: K = vector(N+1);
! 412: D = vector(N+1);
! 413: Kind = vector(N+1);
! 414:
! 415: for ( I = 1; I <= N; I++ ) {
! 416: FI = F[I-1]; Len = length(FI);
! 417: B[I] = FI;
! 418: T = vector(Len-1);
! 419: for ( J = 1; J < Len; J++ ) T[J-1] = FI[J];
! 420: Bpos[I] = qsort(T,newsyz.comp_pos);
! 421: C[I] = vector(Len);
! 422: H[I] = vector(Len);
! 423: Kind[I] = vector(Len);
! 424: K[I] = [];
! 425: Max = 0;
! 426: for ( J = 1; J < Len; J++ )
! 427: if ( (Pos = dpm_hp(FI[J][0])) > Max ) Max = Pos;
! 428: Z[I] = ZI = vector(Max+1);
! 429: for ( J = 1; J <= Max; J++ ) ZI[J] = [];
! 430: }
! 431: T1 = time(); Ftime = T1[0]-T0[0];
! 432: R = ltov(R); Len = length(R);
! 433: print(["Len",Len]);
! 434: for ( I = 0, NF = 0; I < Len; I++ ) {
! 435: if ( !((I+1)%100) ) print(".",2);
! 436: if ( !((I+1)%10000) ) print(I+1);
! 437: if ( !R[I][3] ) continue;
! 438: NF++;
! 439: reduce(R[I],B,Bpos,C,H,Z,K,Kind,G,One,Top);
! 440: }
! 441: print("");
! 442: print(["NF",NF]);
! 443: T0 = time();
! 444: dpm_set_schreyer_level(0);
! 445: D[1] = map(dpm_sort,H[1]);
! 446: for ( I = 2; I <= N; I++ ) {
! 447: // HTT = [Head,Tab,TailTop]
! 448: HTT = create_base_ord(K[I],length(Kind[I-1]));
! 449: Head = HTT[0]; Tab = HTT[1]; TailTopPos = HTT[2];
! 450: if ( !NoPreProj )
! 451: Tab = map(remove_k,map(dpm_sort,Tab),Kind[I-1]);
! 452: else
! 453: Tab = map(dpm_sort,Tab);
! 454: TailTop = dpm_dptodpm(One,TailTopPos);
! 455: if ( !NoSimpK ) {
! 456: print("simplify_k "+rtostr(I)+"...",2);
! 457: simplify_k(Head,Tab,TailTop,One);
! 458: print("done");
! 459: }
! 460: HI = map(remove_k,map(dpm_sort,H[I]),Kind[I-1]);
! 461: Len = length(HI);
! 462: print("simplify_by_k "+rtostr(I)+"...",2);
! 463: D[I] = vector(Len);
! 464: for ( J = 0; J < Len; J++ ) {
! 465: D[I][J] = simplify_by_k(HI[J],Tab,TailTop,One);
! 466: if ( NoPreProj )
! 467: D[I][J] = remove_k(D[I][J],Kind[I-1]);
! 468: }
! 469: print("done");
! 470: }
! 471: dp_ord([1,0]);
! 472: T1 = time();
! 473: print(["Frame",Ftime,"Prep",Ptime,"Reduce",Rtime,"Search",Stime,"Minimalize",T1[0]-T0[0]]);
! 474: // return [C,H,K,Kind,D];
! 475: D = compress_h(D);
! 476: return D;
! 477: }
! 478:
! 479: def create_base_ord(K,N)
! 480: {
! 481: Tab = vector(N);
! 482: Ks = [];
! 483: for ( T = K; T != []; T = cdr(T) ) {
! 484: Ks = cons(I=dpm_hp(car(T)[1]),Ks);
! 485: Tab[I] = car(T)[0];
! 486: }
! 487: Others = [];
! 488: for ( I = N-1; I >= 1; I-- )
! 489: if ( !Tab[I] ) Others = cons(I,Others);
! 490: Ks = reverse(Ks);
! 491: dp_ord([4,append(Ks,Others),0]);
! 492: return [ltov(Ks),Tab,car(Others)];
! 493: }
! 494:
! 495: /* Head = [i1,i2,...], Tab[i1] = K[0], Tab[i2] = K[1],... */
! 496:
! 497: def simplify_k(Head,Tab,TailTop,One)
! 498: {
! 499: N = length(Tab);
! 500: Len = length(Head);
! 501: for ( I = Len-1; I >= 0; I-- ) {
! 502: M = 1;
! 503: R = Tab[Head[I]];
! 504: H = dpm_hm(R); R = dpm_rest(R);
! 505: while ( R && dpm_dptodpm(One,dpm_hp(R)) > TailTop ) {
! 506: Pos = dpm_hp(R); Red = Tab[Pos];
! 507: CRed = dp_hc(dpm_hc(Red));
! 508: CR = dpm_extract(R,Pos);
! 509: L = dpm_remove_cont(CRed*R-CR*Red);
! 510: R = L[1]; M *= CRed/L[0];
! 511: }
! 512: Tab[Head[I]] = M*H+R;
! 513: }
! 514: }
! 515:
! 516: def simplify_by_k(F,Tab,TailTop,One)
! 517: {
! 518: R = F;
! 519: M = 1;
! 520: while ( R && dpm_dptodpm(One,dpm_hp(R)) > TailTop ) {
! 521: Pos = dpm_hp(R); Red = Tab[Pos];
! 522: CRed = dp_hc(dpm_hc(Red));
! 523: CR = dpm_extract(R,Pos);
! 524: L = dpm_remove_cont(CRed*R-CR*Red);
! 525: R = L[1]; M *= CRed/L[0];
! 526: }
! 527: return (1/M)*R;
! 528: }
! 529:
! 530: /* Kind[I]=0 => phi(ei)\in H, Kind[I]=1 => phi(ei)\in K */
! 531: def remove_k(F,Kind)
! 532: {
! 533: R = [];
! 534: for ( T = F; T; T = dpm_rest(T) )
! 535: if ( Kind[dpm_hp(T)] != 1 ) R = cons(dpm_hm(T),R);
! 536: for ( S = 0; R != []; R = cdr(R) )
! 537: S += car(R);
! 538: return S;
! 539: }
! 540:
! 541: def remove_k1(F,Kind)
! 542: {
! 543: return [remove_k(F[0],Kind),F[1]];
! 544: }
! 545:
! 546: def extract_nonzero(A)
! 547: {
! 548: N = length(A);
! 549: R = [];
! 550: for ( C = I = 0; I < N; I++ )
! 551: if ( A[I] ) R=cons(A[I],R);
! 552: return reverse(R);;
! 553: }
! 554:
! 555: def nonzero(A)
! 556: {
! 557: N = length(A);
! 558: for ( C = I = 0; I < N; I++ )
! 559: if ( A[I] ) C++;
! 560: return C;
! 561: }
! 562:
! 563: def phi(C,F)
! 564: {
! 565: R = 0;
! 566: for ( T = F; T; T = dpm_rest(T) ) {
! 567: Coef = dpm_hc(T); Pos = dpm_hp(T);
! 568: R += Coef*C[Pos];
! 569: }
! 570: return R;
1.1 noro 571: }
572:
1.3 ! noro 573: def syz_check(H,I)
1.1 noro 574: {
1.3 ! noro 575: HI = H[I];
! 576: // dpm_set_schreyer_level(I-1);
! 577: HI1 = H[I+1];
! 578: Len = size(HI1)[0];
! 579: for ( J = 1; J < Len; J++ ) {
! 580: F = HI1[J];
! 581: R = phi(HI,F);
! 582: if ( R ) print([J,"NG"]);
! 583: }
1.1 noro 584: }
585:
1.3 ! noro 586: // for compressed C
! 587: def phi0(C,F)
1.1 noro 588: {
1.3 ! noro 589: R = 0;
! 590: for ( T = F; T; T = dpm_rest(T) ) {
! 591: Coef = dpm_hc(T); Pos = dpm_hp(T);
! 592: R += Coef*C[Pos-1];
! 593: }
! 594: return R;
1.1 noro 595: }
596:
1.3 ! noro 597: // for compressed H
! 598: def syz_check0(H,I)
1.1 noro 599: {
1.3 ! noro 600: HI = H[I];
! 601: // dpm_set_schreyer_level(I-1);
! 602: HI1 = H[I+1];
! 603: Len = length(HI1);
! 604: for ( J = 0; J < Len; J++ ) {
! 605: F = HI1[J];
! 606: R = phi0(HI,F);
! 607: if ( R ) print([J,"NG"]);
! 608: }
1.1 noro 609: }
610:
1.3 ! noro 611: // renumber position
! 612: def renumber_pos(F,Tab)
1.1 noro 613: {
1.3 ! noro 614: L = [];
! 615: for ( T = F; T; T = dpm_rest(T) )
! 616: L = cons(dpm_hm(T),L);
! 617: R = 0;
! 618: for ( T = L; T != []; T = cdr(T) )
! 619: R += dpm_dptodpm(dpm_hc(car(T)),Tab[dpm_hp(car(T))]);
! 620: return R;
1.1 noro 621: }
622:
1.3 ! noro 623: // compress H1 and renumber H
! 624: def compress(H,H1)
1.1 noro 625: {
1.3 ! noro 626: // create index table for H1
! 627: L1 = length(H1);
! 628: Tmp = vector(L1);
! 629: Tab = vector(L1);
! 630: for ( I = 1, J = 1; I < L1; I++ )
! 631: if ( H1[I] ) {
! 632: Tab[I] = J;
! 633: Tmp[J++] = H1[I];
! 634: }
! 635: NH1 = vector(J);
! 636: for ( I = 1; I < J; I++ )
! 637: NH1[I] = Tmp[I];
! 638: if ( H )
! 639: H = map(renumber_pos,H,Tab);
! 640: return [H,NH1];
1.1 noro 641: }
642:
1.3 ! noro 643: def compress_h(H)
1.1 noro 644: {
1.3 ! noro 645: // H = [0,H[1],...,H[L-1]]
! 646: L = length(H);
! 647: NH = vector(L-1);
! 648: H1 = H[1];
! 649: for ( I = 2; I < L; I++ ) {
! 650: R = compress(H[I],H1);
! 651: H1 = R[0];
! 652: NH[I-2] = cdr(vtol(R[1]));
! 653: }
! 654: R = compress(0,H1);
! 655: NH[L-2] = cdr(vtol(R[1]));
! 656: return NH;
1.1 noro 657: }
1.3 ! noro 658: endmodule$
1.1 noro 659: end$
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>