[BACK]Return to ndbf.rr CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-contrib / testing / noro

File: [local] / OpenXM / src / asir-contrib / testing / noro / ndbf.rr (download)

Revision 1.20, Fri Sep 5 11:55:19 2014 UTC (9 years, 9 months ago) by ohara
Branch: MAIN
CVS Tags: HEAD
Changes since 1.19: +7 -7 lines

Fixed for calling qsort, mapat because of recent changes in module implementation.

/* $OpenXM: OpenXM/src/asir-contrib/testing/noro/ndbf.rr,v 1.20 2014/09/05 11:55:19 ohara Exp $ */
/* requires 'primdec' */

#define TMP_H hhhhhhhh
#define TMP_S ssssssss
#define TMP_DS dssssssss
#define TMP_T tttttttt
#define TMP_DT dtttttttt
#define TMP_Y1 yyyyyyyy1
#define TMP_DY1 dyyyyyyyy1
#define TMP_Y2 yyyyyyyy2
#define TMP_DY2 dyyyyyyyy2

if (!module_definedp("gr")) load("gr")$ else{ }$
if (!module_definedp("primdec")) load("primdec")$ else{ }$
if (!module_definedp("newsyz")) load("noro_module_syz.rr")$ else{ }$
  /* Empty for now. It will be used in a future. */

/* toplevel */

module ndbf$

/* bfunction */

localf bfunction, in_ww, in_ww_main, ann, ann_n$
localf ann0, ann_fa, psi, ww_weight, compare_first, generic_bfct$
localf generic_bfct_1, initial_part, bfct, indicial1, bfct_via_gbfct$
localf bfct_via_gbfct_weight, bfct_via_gbfct_weight_1, bfct_via_gbfct_weight_2$
localf weyl_minipolym, weyl_minipoly, weyl_nf, weyl_nf_quo_check$
localf weyl_nf_quo, weyl_nf_mod, b_subst, v_factorial, w_tdeg$
localf replace_vars_f, replace_vars_v, replace_var$
localf action_on_gfs, action_on_gfs_1$
localf nd_gb_candidate$
localf in_gb_oaku, homogenize_oaku$

/* stratification */

localf weyl_subst, bfactor, gen_a, gen_d$
localf gen_dm, elimination, weyl_ideal_quotient, psi0$
localf bf_strat, bf_strat_stage2, bf_strat_stage3, bf_local$
localf conv_tdt, merge_tower, stratify_bf, tdt_homogenize$
localf sing, tower_in_p, subst_vars, compute_exponent$
localf zero_inclusion, weyl_divide_by_right, elim_mat, int_cons$
localf ideal_intersection$

def bfunction(F)
{
	if ( member(s,vars(F)) )
		error("ann : the variable 's' is reserved.");
	/* F -> F/Fcont */
	F1 = ptozp(F); Fcont = sdiv(F,F1); F = F1;

	if ( type(Heu=getopt(heuristic)) == -1 ) Heu = 0;
	if ( type(Vord=getopt(vord)) == -1 || type(Vord) != 4 ) Vord = 0;
	if ( type(Wt=getopt(weight)) == -1 ) Wt = 0;
	if ( type(Op=getopt(op)) == -1 ) Op = 0;
	L = in_ww(F|weight=Wt,heuristic=Heu,vord=Vord);
	Indata = L[0]; AllData = L[1]; VData = L[2];
	GIN = Indata[0]; VDV = Indata[1]; WVDV = AllData[4];
	W = Indata[4];
	dp_set_weight(W);
	B = weyl_minipoly(GIN,VDV,0,WVDV);
	dp_set_weight(0);	
	if ( !Op ) return subst(B,s,-s-1);

	V0 = VData[0]; DV0 = VData[1]; T = VData[2]; DT = VData[3];
	BPT = weyl_subst(B,T*DT,VDV);

	/* computation using G0,GIN0,VDV0 */
	G0 = AllData[0]; GIN0 = AllData[1]; VDV0 = AllData[2]; WtV0 = AllData[5];
	dp_set_weight(WtV0); dp_ord(0);
	PS = map(dp_ptod,GIN0,VDV0); Len = length(PS);
	for ( I = Len-1, Ind = []; I >= 0; I-- ) Ind = cons(I,Ind);
	/* QR = [D,M,Coef] */
	Ax = 1;
	AxBPT = dp_ptod(Ax*BPT,VDV0);
	QR = weyl_nf_quo(Ind,AxBPT,1,PS);
	if ( !weyl_nf_quo_check(AxBPT,PS,QR) ) 
		error("bfunction : invalid quotient");
	if ( QR[0] ) error("bfunction : invalid quotient");
	Den = QR[1]; Coef = QR[2];
	for ( I = 0, R = Den*AxBPT; I < Len; I++ )
		R -= dp_weyl_mul(Coef[I],dp_ptod(G0[I],VDV0));
	R = dp_dtop(R,VDV0);
	CR = conv_tdt(R,F,V0,DV0,T,DT);

	dp_set_weight(0);
	Cont = cont(CR); CR /= Cont; 
	Cont *= dn(Fcont); Den *= nm(Fcont);
	Gcd = igcd(Den,Cont);
	return [subst(B,s,-s-1),(Cont*CR)/(Den*Ax)];
}

/*
	returns [InData,AllData,VData] 
	InData = [GIN,VDV,V,DV,WtV]
	AllData = [G0,GIN0,VDV0,W,WVDV,WtV0]
	VData = [V0,DV0,T,DT]
	GIN0 = ini_(-W,W)(G0)
	WVDV = W[0]*V[0]*DV[0]+... 
*/

def in_ww(F)
{
	F = ptozp(F);
	V = vars(F);
	N = length(V);
	D = newvect(N);
	Wt = getopt(weight);
	Vord = getopt(vord);
	if ( type(Wt) != 4 ) {
		if ( type(Vord) != 4 ) {
	    	for ( I = 0; I < N; I++ )
	    		D[I] = [deg(F,V[I]),V[I]];
	    	qsort(D,ndbf.compare_first);
	    	for ( V = [], I = 0; I < N; I++ )
	    		V = cons(D[I][1],V);
			V = reverse(V);
		} else
			V = Vord;
		for ( I = 0, Wt = []; I < N; I++ )
			Wt = cons(1,Wt);
	} else {
		Wt1 = vector(N);
		if ( type(Vord) != 4 ) {
			for ( I = 0, F1 =F; I < N; I++ ) {
				VI = Wt[2*I]; WI = Wt[2*I+1];
				for ( J = 0; J < N; J++ )
					if ( VI == V[J] ) break;
				F1 = subst(F1,VI,VI^WI);
			}
	    	for ( I = 0; I < N; I++ )
	    		D[I] = [deg(F1,V[I]),V[I]];
	    	qsort(D,ndbf.compare_first);
	    	for ( V = [], I = 0; I < N; I++ )
	    		V = cons(D[I][1],V);
			V = reverse(V);
		} else
			V = Vord;
		for ( I = 0; I < N; I++ ) {
			VI = Wt[2*I]; WI = Wt[2*I+1];
			for ( J = 0; J < N; J++ )
				if ( VI == V[J] ) break;
			Wt1[J] = WI;
		}
		Wt = vtol(Wt1);
	}
	Tdeg = w_tdeg(F,V,Wt);
	/* weight for [t,x1,...,xn,dt,dx1,...,dxn,h] */
	WtV = newvect(2*(N+1)+1);
	WtV[0] = Tdeg; WtV[N+1] = 1; WtV[2*(N+1)] = 1;
	/* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
	for ( I = 1; I <= N; I++ ) {
		WtV[I] = Wt[I-1]; WtV[N+1+I] = Tdeg-Wt[I-1]+1;
	}
	for ( I = N-1, DV = []; I >= 0; I-- )
		DV = cons(strtov("d"+rtostr(V[I])),DV);

	B = [TMP_T-F];
	for ( I = 0; I < N; I++ ) {
		B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
	}
	V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
	W = newvect(N+1); W[0] = 1;
    VW1 = [V1,DV1,WtV,W];

	/* weight for [x1,...,xn,t,dx1,...,dxn,dt,h] */
	WtV = newvect(2*(N+1)+1);
	WtV[N] = Tdeg; WtV[2*N+1] = 1; WtV[2*(N+1)] = 1;
	for ( I = 0; I < N; I++ ) {
		WtV[I] = Wt[I]; WtV[N+1+I] = Tdeg-Wt[I]+1;
	}
	for ( I = N-1, DV = []; I >= 0; I-- )
		DV = cons(strtov("d"+rtostr(V[I])),DV);

	B = [TMP_T-F];
	for ( I = 0; I < N; I++ ) {
		B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
	}
	V1 = append(V,[TMP_T]); DV1 = append(DV,[TMP_DT]);
	W = newvect(N+1); W[N] = 1;
    VW2 = [V1,DV1,WtV,W];

	Heu = getopt(heuristic);
	if ( type(Heu) != -1 && Heu )
		L = in_ww_main(B,VW1,VW2);
	else
		L = in_ww_main(B,VW1,0);
	return append(L,[[V,DV,TMP_T,TMP_DT,Wt]]);
}

/* 
	returns [InData,AllData] 
	InData = [GIN,VDV,V,DV,WtV]
	AllData = [G0,GIN0,VDV0,W,WVDV,WtV0]
	GIN0 = ini_(-W,W)(G0)
	WVDV = W[0]*V[0]*DV[0]+... 
*/

def in_ww_main(F,VW1,VW2)
{
	V = VW1[0]; DV = VW1[1]; WtV = VW1[2]; W = VW1[3];
	dp_set_weight(WtV);

	N = length(V);
	N2 = N*2;

	/* If W is a list, convert it to a vector */
	if ( type(W) == 4 )
		W = newvect(length(W),W);
	dp_weyl_set_weight(W);

	/* create a term order M in D<x,d> (DRL) */
	M = newmat(N2,N2);
	for ( J = 0; J < N2; J++ )
		M[0][J] = 1;
	for ( I = 1; I < N2; I++ )
		M[I][N2-I] = -1;
	
	VDV = append(V,DV);

	/* create a non-term order MW in D<x,d> */
	MW = newmat(N2+1,N2);
	for ( J = 0; J < N; J++ )
		MW[0][J] = -W[J];
	for ( ; J < N2; J++ )
		MW[0][J] = W[J-N];
	for ( I = 1; I <= N2; I++ )
		for ( J = 0; J < N2; J++ )
			MW[I][J] = M[I-1][J];

	/* create a homogenized term order MWH in D<x,d,h> */
	MWH = newmat(N2+2,N2+1);
	for ( J = 0; J <= N2; J++ )
		MWH[0][J] = 1;
	for ( I = 1; I <= N2+1; I++ )
		for ( J = 0; J < N2; J++ )
			MWH[I][J] = MW[I-1][J];

	/* homogenize F */
	VDVH = append(VDV,[TMP_H]);
	FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH);
	
/* 
 * FH is a GB w.r.t. any term order s.t. LT(FH)=[t,dx1,...,dxn]
 * Compute a groebner basis of FH w.r.t. MWH by modular change of
 * ordering.
 * Since F is Z-coef, LC(FH)=[1,...,1] and we can use any prime p
 * for trace algorithm.
 */
/*	dp_gr_flags(["Top",1,"NoRA",1]); */
	for ( I = 0, HC=[]; I <= N; I++ ) HC = cons(1,HC);
	GH = nd_gb_candidate(FH,VDVH,11,0,HC,1);
/*	dp_gr_flags(["Top",0,"NoRA",0]); */

	/* dehomigenize GH */
	G = map(subst,GH,TMP_H,1);

	/* G is a groebner basis w.r.t. a non term order MW */
	/* take the initial part w.r.t. (-W,W) */
	GIN = map(initial_part,G,VDV,MW,W);

	/* GIN is a groebner basis w.r.t. a term order M */
	/* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */

	/* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
	for ( I = 0, T = 0; I < N; I++ )
		T += W[I]*V[I]*DV[I];

	AllData = [G,GIN,VDV,W,T,WtV];
	if ( VW2 ) {
		/* take LC(GIN) w.r.t. DRL */
        dp_set_weight(WtV); dp_ord(0);
        HC = map(dp_hc,map(dp_ptod,GIN,VDV));
		V2 = VW2[0]; DV2 = VW2[1]; WtV2 = VW2[2];
		VDV2 = append(V2,DV2);
		dp_set_weight(WtV2);
		GIN2 = nd_gb_candidate(GIN,VDV2,0,0,HC,1);
		InData = [GIN2,VDV2,V2,DV2,WtV2];
	} else {
		if ( 0 ) {
			dp_set_weight(WtV);
			GIN1 = nd_weyl_gr_postproc(GIN,VDV,0,0,0);
			InData = [GIN1,VDV,V,DV,WtV];
		} else
			InData = [GIN,VDV,V,DV,WtV];
	}

/*	B = weyl_minipoly(GIN2,VDV2,0,T); */ /* M represents DRL order */
	WtV = dp_set_weight();
	dp_set_weight(0);
	
	return [InData,AllData];
}

/* annihilating ideal of F^s */

def ann(F)
{
	if ( member(s,vars(F)) )
		error("ann : the variable 's' is reserved.");
	if ( type(Vord=getopt(vord)) == -1 ) Vord = 0;
	F = ptozp(F);
	V = vars(F);
	if ( Vord ) {
		Param = setminus(V,Vord);
		V = Vord;
	}
	N = length(V);
	D = newvect(N);
	if ( type(Wt=getopt(weight)) == -1 )
		for ( I = N-1, Wt = []; I >= 0; I-- ) Wt = append([V[I],1],Wt);

	Wt1 = vector(N);
	for ( I = 0, F1 =F; I < N; I++ ) {
		VI = Wt[2*I]; WI = Wt[2*I+1];
		for ( J = 0; J < N; J++ )
			if ( VI == V[J] ) break;
		F1 = subst(F1,VI,VI^WI);
	}
	for ( I = 0; I < N; I++ ) D[I] = [deg(F1,V[I]),V[I]];
	qsort(D,ndbf.compare_first);
	for ( V = [], I = 0; I < N; I++ ) V = cons(D[I][1],V);
	V = reverse(V); 
	for ( I = 0; I < N; I++ ) {
		VI = Wt[2*I]; WI = Wt[2*I+1];
		for ( J = 0; J < N; J++ ) if ( VI == V[J] ) break;
		Wt1[J] = WI;
	}
	Wt = vtol(Wt1);

	for ( I = N-1, DV = []; I >= 0; I-- )
		DV = cons(strtov("d"+rtostr(V[I])),DV);

	W = append([TMP_Y1,TMP_Y2,TMP_T],V);
	DW = append([TMP_DY1,TMP_DY2,TMP_DT],DV);

	B = [1-TMP_Y1*TMP_Y2,TMP_T-TMP_Y1*F];
	for ( I = 0; I < N; I++ ) {
		B = cons(DV[I]+TMP_Y1*diff(F,V[I])*TMP_DT,B);
	}

	Tdeg = w_tdeg(F,V,Wt);
	/* y1*y2-1, t-y1*f, dx1+y1*df/dx1*dt ... */
	/* weight for [y1,y2,t,   x1,...,xn,  dy1,dy2, dt,dx1,...,dxn,   h]   */
	/*              0  1 2    3      N3-1 N3  N3+1 N3+2              2*N3 */
	/*              1  1 D+1  w1     wn    1   1    1  D       D      1    */
	N3 = N+3;
	WtV = newvect(2*N3+1);
	WtV[0] = WtV[1] = 1; WtV[2] = Tdeg+1; 
	for ( I = 3; I < N3; I++ ) WtV[I] = Wt[I-3];
	for ( ; I <= N3+2; I++ ) WtV[I] = 1;
	for ( ; I < 2*N3; I++ ) WtV[I] = Tdeg;
	WtV[2*N3] = 1;

	/* B is already a GB => modular change of ordering can be applied */
	/* any prime is available => HC=[1] */
	dp_set_weight(WtV);
	G0 = nd_gb_candidate(B,append(W,DW),[[0,2],[0,length(W)*2-2]],0,[1],1);
	dp_set_weight(0);
	G1 = [];
	for ( T = G0; T != []; T = cdr(T) ) {
		E = car(T); VL = vars(E);
		if ( !member(TMP_Y1,VL) && !member(TMP_Y2,VL) )
			G1 = cons(E,G1);
	}
	G2 = map(psi,G1,TMP_T,TMP_DT);
	G3 = map(subst,G2,TMP_T,-1-s);
	return G3;
}

def in_gb_oaku(F)
{
	if ( member(s,vars(F)) )
		error("ann : the variable 's' is reserved.");
	F = ptozp(F);
	V = vars(F);
	N = length(V);
	D = newvect(N);
	if ( type(Wt=getopt(weight)) == -1 )
		for ( I = N-1, Wt = []; I >= 0; I-- ) Wt = append([V[I],1],Wt);

	Wt1 = vector(N);
	for ( I = 0, F1 =F; I < N; I++ ) {
		VI = Wt[2*I]; WI = Wt[2*I+1];
		for ( J = 0; J < N; J++ )
			if ( VI == V[J] ) break;
		F1 = subst(F1,VI,VI^WI);
	}
	for ( I = 0; I < N; I++ ) D[I] = [deg(F1,V[I]),V[I]];
	qsort(D,ndbf.compare_first);
	for ( V = [], I = 0; I < N; I++ ) V = cons(D[I][1],V);
	V = reverse(V); 
	for ( I = 0; I < N; I++ ) {
		VI = Wt[2*I]; WI = Wt[2*I+1];
		for ( J = 0; J < N; J++ ) if ( VI == V[J] ) break;
		Wt1[J] = WI;
	}
	Wt = vtol(Wt1);

	for ( I = N-1, DV = []; I >= 0; I-- )
		DV = cons(strtov("d"+rtostr(V[I])),DV);

	W = append([TMP_Y1,TMP_Y2,TMP_T],V);
	DW = append([TMP_DY1,TMP_DY2,TMP_DT],DV);

	B = [TMP_T-TMP_Y1*F];
	for ( I = 0; I < N; I++ ) {
		B = cons(DV[I]+TMP_Y1*diff(F,V[I])*TMP_DT,B);
	}

	Tdeg = w_tdeg(F,V,Wt);
	/* y1*y2-1, t-y1*f, dx1+y1*df/dx1*dt ... */
	/* weight for [y1,y2,t,   x1,...,xn,  dy1,dy2, dt,dx1,...,dxn,   h]   */
	/*              0  1 2    3      N3-1 N3  N3+1 N3+2              2*N3 */
	/*              1  1 D+1  1      1    1   1    1  D       D      1    */
	N3 = N+3;
	WtV = newvect(2*N3+1);
	WtV[0] = WtV[1] = 1; WtV[2] = Tdeg+1; 
	for ( I = 3; I <= N3+2; I++ ) WtV[I] = 1;
	for ( ; I < 2*N3; I++ ) WtV[I] = Tdeg;
	WtV[2*N3] = 1;

	/* B is already a GB => modular change of ordering can be applied */
	/* any prime is available => HC=[1] */
	dp_set_weight(WtV);
	G0 = nd_gb_candidate(B,append(W,DW),[[0,2],[0,length(W)*2-2]],0,[1],1);
	dp_set_weight(0);
	G1 = map(subst,G0,TMP_Y1,1);
	return [G1,append(V,DV)];
}

/* homogenization w.r.t. (-W,W)-weight */
/* VDV = [x1,...,xn,dx1,...,dxn] */
/* homogenize F w.r.t. (W,-W,1) for (x,dx,y) */

def homogenize_oaku(F,VDV,W,Y)
{
	N = length(VDV);
	if ( N%2 ) error("invalid variable list");
	N2 = N/2;
	if ( length(W) != N2 ) error("inconsistent weight vector");
	W0 = dp_set_weight();
	Wt = append(W,append(vtol(-ltov(W)),[1]));
	dp_set_weight(Wt);
	H = homogenize(F,VDV,Y);
	dp_set_weight(W0);
	if ( type(Vars=getopt(vars)) != -1 && Vars ) {
		DY = strtov("d"+rtostr(Y));
		for ( I = 0, T = VDV, V = []; I < N2; I++, T = cdr(T) )
			V = cons(car(T),V);
		T = cons(Y,append(T,[DY]));
		for ( ; V != []; V = cdr(V) ) T = cons(car(V),T);
		return [H,T];
	} else return H;
}

/* F = [F0,F1,...] */

def ann_n(F)
{
	L = length(F);
	V = vars(F);
	N = length(V);
	D = newvect(N);

	for ( I = N-1, DV = []; I >= 0; I-- )
		DV = cons(strtov("d"+rtostr(V[I])),DV);
	W = []; DW = [];
	for ( I = L-1; I >= 0; I-- ) {
		SI = rtostr(I);
		W = cons(strtov("t"+SI),W);
		DW = cons(strtov("dt"+SI),DW);
	}
	U = []; DU = [];
	for ( I = L-1; I >= 0; I-- ) {
		SI = rtostr(I);
		U = append([strtov("u"+SI),strtov("v"+SI)],U);	
		DU = append([strtov("du"+SI),strtov("dv"+SI)],DU);	
	}
	
	B = [];
	for ( I = 0; I < N; I++ ) {
		T = DV[I];
		for ( J = 0; J < L; J++ )
			T += U[2*J]*diff(F[J],V[I])*DW[J];
		B = cons(T,B);
	}
	for ( I = 0; I < L; I++ )
		B = append([W[I]-U[2*I]*F[I],1-U[2*I]*U[2*I+1]],B);
		
	VA = append(U,append(W,V));
	DVA = append(DU,append(DW,DV));
	VDV = append(VA,DVA);
#if 0
	G0 = nd_weyl_gr(B,VDV,0,[[0,2*L],[0,length(VDV)-2*L]]);
#else
	G0 = nd_gb_candidate(B,VDV,[[0,2*L],[0,length(VDV)-2*L]],0,[1],1);
#endif
	G1 = [];
	for ( T = G0; T != []; T = cdr(T) ) {
		E = car(T); VL = vars(E);
		for ( TV = U; TV != []; TV = cdr(TV) )
			if ( member(car(TV),VL) ) break;
		if ( TV == [] )
			G1 = cons(E,G1);
	}
	G2 = G1;
	for ( I = 0; I < L; I++ ) {
		G2 = map(psi,G2,W[I],DW[I]);
		G2 = map(subst,G2,W[I],-1-strtov("s"+rtostr(I)));
	}	
	return G2;
}

/*
 * compute J_f|s=r, where r = the minimal integral root of global b_f(s)
 * ann0(F) returns [MinRoot,Ideal]
 */

def ann0(F)
{
	F = subst(F,s,TMP_S);
	Ann = ann(F);
	Bf = bfunction(F);

	FList = cdr(fctr(Bf));
	for ( T = FList, Min = 0; T != []; T = cdr(T) ) {
		LF = car(car(T));
		Root = -coef(LF,0)/coef(LF,1);
		if ( dn(Root) == 1 && Root < Min )
			Min = Root;
	}
	return [Min,map(subst,Ann,s,Min,TMP_S,s,TMP_DS,ds)];
}

/*
 * For a polynomial F and a scalar A,
 * compute generators of Ann(F^A).
 */

def ann_fa(F,A)
{
	if ( type(Syz=getopt(syz)) == -1 ) Syz = 0;
	
	F = subst(F,s,TMP_S);
	Ann = ann(F);
	Bf = bfunction(F);

	FList = cdr(fctr(Bf));
	for ( T = FList, Min = 0; T != []; T = cdr(T) ) {
		LF = car(car(T));
		Root = -coef(LF,0)/coef(LF,1);
		if ( dn(Root) == 1 && Root < Min )
			Min = Root;
	}
	D = A-Min;
	if ( dn(D) != 1 || D <= 0 )
		return map(ptozp,map(subst,Ann,s,A,TMP_S,s,TMP_DS,ds));
	
	V = vars(F);
	for ( I = length(V)-1, DV = []; I >= 0; I-- )
		DV = cons(strtov("d"+rtostr(V[I])),DV);
	VDV = append(V,DV);
	R = map(subst,Ann,s,Min,TMP_S,s,TMP_DS,ds);
	F = ptozp(F);
	
	if ( Syz ) {
		/* syzygy method */
		S = newsyz.module_syz(cons(F^D,R),VDV,1,0|weyl=1);
		B = car(S);
		for ( R = []; B != []; B = cdr(B) )
			if ( H = car(car(B)) )
				R = cons(ptozp(H),R);
	} else {
		/* colon method */
		for ( I = 0; I < D; I++ )
			R = weyl_ideal_quotient(R,F,VDV);
	}
	return R;
}

def psi0(F,T,DT)
{
	D = dp_ptod(F,[T,DT]);
	Wmax = ww_weight(D);
	D1 = dp_rest(D);
	for ( ; D1; D1 = dp_rest(D1) )
		if ( ww_weight(D1) > Wmax )
			Wmax = ww_weight(D1);
	for ( D1 = D, Dmax = 0; D1; D1 = dp_rest(D1) )
		if ( ww_weight(D1) == Wmax )
			Dmax += dp_hm(D1);
	if ( Wmax >= 0 )
		Dmax = dp_weyl_mul(<<Wmax,0>>,Dmax);
	else
		Dmax = dp_weyl_mul(<<0,-Wmax>>,Dmax);
	Rmax = dp_dtop(Dmax,[T,DT]);
	return Rmax;
}

def psi(F,T,DT)
{
	Rmax = psi0(F,T,DT);
	R = b_subst(subst(Rmax,DT,1),T);
	return R;
}

def ww_weight(D)
{
	V = dp_etov(D);
	return V[1]-V[0];
}

def compare_first(A,B)
{
	A0 = car(A);
	B0 = car(B);
	if ( A0 > B0 )
		return 1;
	else if ( A0 < B0 )
		return -1;
	else
		return 0;
}

/* generic b-function w.r.t. weight vector W */

def generic_bfct(F,V,DV,W)
{
	N = length(V);
	N2 = N*2;

	/* If W is a list, convert it to a vector */
	if ( type(W) == 4 )
		W = newvect(length(W),W);
	dp_weyl_set_weight(W);

	/* create a term order M in D<x,d> (DRL) */
	M = newmat(N2,N2);
	for ( J = 0; J < N2; J++ )
		M[0][J] = 1;
	for ( I = 1; I < N2; I++ )
		M[I][N2-I] = -1;
	
	VDV = append(V,DV);

	/* create a non-term order MW in D<x,d> */
	MW = newmat(N2+1,N2);
	for ( J = 0; J < N; J++ )
		MW[0][J] = -W[J];
	for ( ; J < N2; J++ )
		MW[0][J] = W[J-N];
	for ( I = 1; I <= N2; I++ )
		for ( J = 0; J < N2; J++ )
			MW[I][J] = M[I-1][J];

	/* create a homogenized term order MWH in D<x,d,h> */
	MWH = newmat(N2+2,N2+1);
	for ( J = 0; J <= N2; J++ )
		MWH[0][J] = 1;
	for ( I = 1; I <= N2+1; I++ )
		for ( J = 0; J < N2; J++ )
			MWH[I][J] = MW[I-1][J];

	/* homogenize F */
	VDVH = append(VDV,[TMP_H]);
	FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH);
	
	/* compute a groebner basis of FH w.r.t. MWH */
	dp_gr_flags(["Top",1,"NoRA",1]);
	GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
	dp_gr_flags(["Top",0,"NoRA",0]);

	/* dehomigenize GH */
	G = map(subst,GH,TMP_H,1);

	/* G is a groebner basis w.r.t. a non term order MW */
	/* take the initial part w.r.t. (-W,W) */
	GIN = map(initial_part,G,VDV,MW,W);

	/* GIN is a groebner basis w.r.t. a term order M */
	/* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
	
	/* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
	for ( I = 0, T = 0; I < N; I++ )
		T += W[I]*V[I]*DV[I];
	B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */
	return B;
}

/* all term reduction + interreduce */
def generic_bfct_1(F,V,DV,W)
{
	N = length(V);
	N2 = N*2;

	/* If W is a list, convert it to a vector */
	if ( type(W) == 4 )
		W = newvect(length(W),W);
	dp_weyl_set_weight(W);

	/* create a term order M in D<x,d> (DRL) */
	M = newmat(N2,N2);
	for ( J = 0; J < N2; J++ )
		M[0][J] = 1;
	for ( I = 1; I < N2; I++ )
		M[I][N2-I] = -1;
	
	VDV = append(V,DV);

	/* create a non-term order MW in D<x,d> */
	MW = newmat(N2+1,N2);
	for ( J = 0; J < N; J++ )
		MW[0][J] = -W[J];
	for ( ; J < N2; J++ )
		MW[0][J] = W[J-N];
	for ( I = 1; I <= N2; I++ )
		for ( J = 0; J < N2; J++ )
			MW[I][J] = M[I-1][J];

	/* create a homogenized term order MWH in D<x,d,h> */
	MWH = newmat(N2+2,N2+1);
	for ( J = 0; J <= N2; J++ )
		MWH[0][J] = 1;
	for ( I = 1; I <= N2+1; I++ )
		for ( J = 0; J < N2; J++ )
			MWH[I][J] = MW[I-1][J];

	/* homogenize F */
	VDVH = append(VDV,[TMP_H]);
	FH = map(dp_dtop,map(dp_homo,map(dp_ptod,F,VDV)),VDVH);
	
	/* compute a groebner basis of FH w.r.t. MWH */
/*	dp_gr_flags(["Top",1,"NoRA",1]); */
	GH = dp_weyl_gr_main(FH,VDVH,0,1,11);
/*	dp_gr_flags(["Top",0,"NoRA",0]); */

	/* dehomigenize GH */
	G = map(subst,GH,TMP_H,1);

	/* G is a groebner basis w.r.t. a non term order MW */
	/* take the initial part w.r.t. (-W,W) */
	GIN = map(initial_part,G,VDV,MW,W);

	/* GIN is a groebner basis w.r.t. a term order M */
	/* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
	
	/* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
	for ( I = 0, T = 0; I < N; I++ )
		T += W[I]*V[I]*DV[I];
	B = weyl_minipoly(GIN,VDV,0,T); /* M represents DRL order */
	return B;
}

def initial_part(F,V,MW,W)
{
	N2 = length(V);
	N = N2/2;
	dp_ord(MW);
	DF = dp_ptod(F,V);
	R = dp_hm(DF);
	DF = dp_rest(DF);

	E = dp_etov(R);
	for ( I = 0, TW = 0; I < N; I++ )
		TW += W[I]*(-E[I]+E[N+I]);
	RW = TW;		

	for ( ; DF; DF = dp_rest(DF) ) {
		E = dp_etov(DF);
		for ( I = 0, TW = 0; I < N; I++ )
			TW += W[I]*(-E[I]+E[N+I]);
		if ( TW == RW )
			R += dp_hm(DF);
		else if ( TW < RW )
			break;
		else 
			error("initial_part : cannot happen");
	}
	return dp_dtop(R,V);
	
}

/* b-function of F ? */

def bfct(F)
{
	/* XXX */
	F = replace_vars_f(F);

	V = vars(F);
	N = length(V);
	D = newvect(N);

	for ( I = 0; I < N; I++ )
		D[I] = [deg(F,V[I]),V[I]];
	qsort(D,ndbf.compare_first);
	for ( V = [], I = 0; I < N; I++ )
		V = cons(D[I][1],V);
	for ( I = N-1, DV = []; I >= 0; I-- )
		DV = cons(strtov("d"+rtostr(V[I])),DV);
	V1 = cons(s,V); DV1 = cons(ds,DV);

	G0 = indicial1(F,reverse(V));
	G1 = dp_weyl_gr_main(G0,append(V1,DV1),0,1,0);
	Minipoly = weyl_minipoly(G1,append(V1,DV1),0,s);
	return Minipoly;
}

/* called from bfct() only */

def indicial1(F,V)
{
	W = append([y1,t],V);
	N = length(V);
	B = [t-y1*F];
	for ( I = N-1, DV = []; I >= 0; I-- )
		DV = cons(strtov("d"+rtostr(V[I])),DV);
	DW = append([dy1,dt],DV);
	for ( I = 0; I < N; I++ ) {
		B = cons(DV[I]+y1*diff(F,V[I])*dt,B);
	}
	dp_nelim(1);

	/* homogenized (heuristics) */
	G0 = dp_weyl_gr_main(B,append(W,DW),1,0,6);
	G1 = map(subst,G0,y1,1);
	G2 = map(psi,G1,t,dt);
	G3 = map(subst,G2,t,-s-1);
	return G3;
}

/* b-function computation via generic_bfct() (experimental) */

def bfct_via_gbfct(F)
{
	V = vars(F);
	N = length(V);
	D = newvect(N);

	for ( I = 0; I < N; I++ )
		D[I] = [deg(F,V[I]),V[I]];
	qsort(D,ndbf.compare_first);
	for ( V = [], I = 0; I < N; I++ )
		V = cons(D[I][1],V);
	V = reverse(V);
	for ( I = N-1, DV = []; I >= 0; I-- )
		DV = cons(strtov("d"+rtostr(V[I])),DV);

	B = [TMP_T-F];
	for ( I = 0; I < N; I++ ) {
		B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
	}
	V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
	W = newvect(N+1);
	W[0] = 1;
	R = generic_bfct(B,V1,DV1,W);

	return subst(R,s,-s-1);
}

/* use an order s.t. [t,x,y,z,...,dt,dx,dy,dz,...,h] */

def bfct_via_gbfct_weight(F,V)
{
	N = length(V);
	D = newvect(N);
	Wt = getopt(weight);
	if ( type(Wt) != 4 ) {
		for ( I = 0, Wt = []; I < N; I++ )
			Wt = cons(1,Wt);
	}
	Tdeg = w_tdeg(F,V,Wt);
	WtV = newvect(2*(N+1)+1);
	WtV[0] = Tdeg;
	WtV[N+1] = 1;
	/* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
	for ( I = 1; I <= N; I++ ) {
		WtV[I] = Wt[I-1];
		WtV[N+1+I] = Tdeg-Wt[I-1]+1;
	}
	WtV[2*(N+1)] = 1;
	dp_set_weight(WtV);
	for ( I = N-1, DV = []; I >= 0; I-- )
		DV = cons(strtov("d"+rtostr(V[I])),DV);

	B = [TMP_T-F];
	for ( I = 0; I < N; I++ ) {
		B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
	}
	V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
	W = newvect(N+1);
	W[0] = 1;
	R = generic_bfct_1(B,V1,DV1,W);
	dp_set_weight(0);
	return subst(R,s,-s-1);
}

/* use an order s.t. [x,y,z,...,t,dx,dy,dz,...,dt,h] */

def bfct_via_gbfct_weight_1(F,V)
{
	N = length(V);
	D = newvect(N);
	Wt = getopt(weight);
	if ( type(Wt) != 4 ) {
		for ( I = 0, Wt = []; I < N; I++ )
			Wt = cons(1,Wt);
	}
	Tdeg = w_tdeg(F,V,Wt);
	WtV = newvect(2*(N+1)+1);
	/* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
	for ( I = 0; I < N; I++ ) {
		WtV[I] = Wt[I];
		WtV[N+1+I] = Tdeg-Wt[I]+1;
	}
	WtV[N] = Tdeg;
	WtV[2*N+1] = 1;
	WtV[2*(N+1)] = 1;
	dp_set_weight(WtV);
	for ( I = N-1, DV = []; I >= 0; I-- )
		DV = cons(strtov("d"+rtostr(V[I])),DV);

	B = [TMP_T-F];
	for ( I = 0; I < N; I++ ) {
		B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
	}
	V1 = append(V,[TMP_T]); DV1 = append(DV,[TMP_DT]);
	W = newvect(N+1);
	W[N] = 1;
	R = generic_bfct_1(B,V1,DV1,W);
	dp_set_weight(0);
	return subst(R,s,-s-1);
}

def bfct_via_gbfct_weight_2(F,V)
{
	N = length(V);
	D = newvect(N);
	Wt = getopt(weight);
	if ( type(Wt) != 4 ) {
		for ( I = 0, Wt = []; I < N; I++ )
			Wt = cons(1,Wt);
	}
	Tdeg = w_tdeg(F,V,Wt);

	/* a weight for the first GB computation */
	/* [t,x1,...,xn,dt,dx1,...,dxn,h] */
	WtV = newvect(2*(N+1)+1);
	WtV[0] = Tdeg;
	WtV[N+1] = 1;
	WtV[2*(N+1)] = 1;
	/* wdeg(V[I])=Wt[I], wdeg(DV[I])=Tdeg-Wt[I]+1 */
	for ( I = 1; I <= N; I++ ) {
		WtV[I] = Wt[I-1];
		WtV[N+1+I] = Tdeg-Wt[I-1]+1;
	}
	dp_set_weight(WtV);

	/* a weight for the second GB computation */
	/* [x1,...,xn,t,dx1,...,dxn,dt,h] */
	WtV2 = newvect(2*(N+1)+1);
	WtV2[N] = Tdeg;
	WtV2[2*N+1] = 1;
	WtV2[2*(N+1)] = 1;
	for ( I = 0; I < N; I++ ) {
		WtV2[I] = Wt[I];
		WtV2[N+1+I] = Tdeg-Wt[I]+1;
	}

	for ( I = N-1, DV = []; I >= 0; I-- )
		DV = cons(strtov("d"+rtostr(V[I])),DV);

	B = [TMP_T-F];
	for ( I = 0; I < N; I++ ) {
		B = cons(DV[I]+diff(F,V[I])*TMP_DT,B);
	}
	V1 = cons(TMP_T,V); DV1 = cons(TMP_DT,DV);
	V2 = append(V,[TMP_T]); DV2 = append(DV,[TMP_DT]);
	W = newvect(N+1,[1]);
	dp_weyl_set_weight(W);

	VDV = append(V1,DV1);
	N1 = length(V1);
	N2 = N1*2;

	/* create a non-term order MW in D<x,d> */
	MW = newmat(N2+1,N2);
	for ( J = 0; J < N1; J++ ) {
		MW[0][J] = -W[J]; MW[0][N1+J] = W[J];
	}
	for ( J = 0; J < N2; J++ ) MW[1][J] = 1;
	for ( I = 2; I <= N2; I++ ) MW[I][N2-I+1] = -1;

	/* homogenize F */
	VDVH = append(VDV,[TMP_H]);
	FH = map(dp_dtop,map(dp_homo,map(dp_ptod,B,VDV)),VDVH);
	
	/* compute a groebner basis of FH w.r.t. MWH */
	GH = dp_weyl_gr_main(FH,VDVH,0,1,11);

	/* dehomigenize GH */
	G = map(subst,GH,TMP_H,1);

	/* G is a groebner basis w.r.t. a non term order MW */
	/* take the initial part w.r.t. (-W,W) */
	GIN = map(initial_part,G,VDV,MW,W);

	/* GIN is a groebner basis w.r.t. a term order M */
	/* As -W+W=0, gr_(-W,W)(D<x,d>) = D<x,d> */
	
	/* find b(W1*x1*d1+...+WN*xN*dN) in Id(GIN) */
	for ( I = 0, T = 0; I < N1; I++ )
		T += W[I]*V1[I]*DV1[I];

	/* change of ordering from VDV to VDV2 */
	VDV2 = append(V2,DV2);
	dp_set_weight(WtV2);
	for ( Pind = 0; ; Pind++ ) {
		Prime = lprime(Pind);
		GIN2 = dp_weyl_gr_main(GIN,VDV2,0,-Prime,0);
		if ( GIN2 ) break;
	}

	R = weyl_minipoly(GIN2,VDV2,0,T); /* M represents DRL order */
	dp_set_weight(0);
	return subst(R,s,-s-1);
}

/* minimal polynomial of s; modular computation */

def weyl_minipolym(G,V,O,M,V0)
{
	N = length(V);
	Len = length(G);
	dp_ord(O);
	setmod(M);
	PS = newvect(Len);
	PS0 = newvect(Len);

	for ( I = 0, T = G; T != []; T = cdr(T), I++ )
		PS0[I] = dp_ptod(car(T),V);
	for ( I = 0, T = G; T != []; T = cdr(T), I++ )
		PS[I] = dp_mod(dp_ptod(car(T),V),M,[]);

	for ( I = Len - 1, GI = []; I >= 0; I-- )
		GI = cons(I,GI);

	U = dp_mod(dp_ptod(V0,V),M,[]);
	U = dp_weyl_nf_mod(GI,U,PS,1,M);

	T = dp_mod(<<0>>,M,[]);
	TT = dp_mod(dp_ptod(1,V),M,[]);
	G = H = [[TT,T]];

	for ( I = 1; ; I++ ) {
		if ( dp_gr_print() )
			print(".",2);
		T = dp_mod(<<I>>,M,[]);

		TT = dp_weyl_nf_mod(GI,dp_weyl_mul_mod(TT,U,M),PS,1,M);
		H = cons([TT,T],H);
		L = dp_lnf_mod([TT,T],G,M);
		if ( !L[0] ) {
			if ( dp_gr_print() )
				print("");
			return dp_dtop(L[1],[t]); /* XXX */
		} else
			G = insert(G,L);
	}
}

/* minimal polynomial of s over Q */

def weyl_minipoly(G0,V0,O0,P)
{
	HM = hmlist(G0,V0,O0);

	N = length(V0);
	Len = length(G0);
	dp_ord(O0);
	PS = newvect(Len);
	for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ )
		PS[I] = dp_ptod(car(T),V0);
	for ( I = Len - 1, GI = []; I >= 0; I-- )
		GI = cons(I,GI);
	PSM = newvect(Len);
	DP = dp_ptod(P,V0);

	for ( Pind = 0; ; Pind++ ) {
		Prime = lprime(Pind);
		if ( !valid_modulus(HM,Prime) )
			continue;
		setmod(Prime);
		for ( I = 0, T = G0, HL = []; T != []; T = cdr(T), I++ )
			PSM[I] = dp_mod(dp_ptod(car(T),V0),Prime,[]);

		NFP = weyl_nf(GI,DP,1,PS);
		NFPM = dp_mod(NFP[0],Prime,[])/ptomp(NFP[1],Prime);

		NF = [[dp_ptod(1,V0),1]];
		LCM = 1;

		TM = dp_mod(<<0>>,Prime,[]);
		TTM = dp_mod(dp_ptod(1,V0),Prime,[]);
		GM = NFM = [[TTM,TM]];

		for ( D = 1; ; D++ ) {
			if ( dp_gr_print() )
				print(".",2);
			NFPrev = car(NF);
			NFJ = weyl_nf(GI,
				dp_weyl_mul(NFP[0],NFPrev[0]),NFP[1]*NFPrev[1],PS);
			NFJ = remove_cont(NFJ);
			NF = cons(NFJ,NF);
			LCM = ilcm(LCM,NFJ[1]);

			/* modular computation */
			TM = dp_mod(<<D>>,Prime,[]);
			TTM = dp_mod(NFJ[0],Prime,[])/ptomp(NFJ[1],Prime);
			NFM = cons([TTM,TM],NFM);
			LM = dp_lnf_mod([TTM,TM],GM,Prime);
			if ( !LM[0] )
				break;
			else
				GM = insert(GM,LM);
		}

		if ( dp_gr_print() )
			print("");
		U = NF[0][0]*idiv(LCM,NF[0][1]);
		Coef = [];
		for ( J = D-1; J >= 0; J-- ) {
			Coef = cons(strtov("u"+rtostr(J)),Coef);
			U += car(Coef)*NF[D-J][0]*idiv(LCM,NF[D-J][1]);
		}

		for ( UU = U, Eq = []; UU; UU = dp_rest(UU) )
			Eq = cons(dp_hc(UU),Eq);
		M = etom([Eq,Coef]);
		B = henleq(M,Prime);
		if ( dp_gr_print() )
			print("");
		if ( B ) {
			R = 0;
			for ( I = 0; I < D; I++ )
				R += B[0][I]*s^I;
			R += B[1]*s^D;
			return R;
		}
	}
}

def weyl_nf(B,G,M,PS)
{
	for ( D = 0; G; ) {
		for ( U = 0, L = B; L != []; L = cdr(L) ) {
			if ( dp_redble(G,R=PS[car(L)]) > 0 ) {
				GCD = igcd(dp_hc(G),dp_hc(R));
				CG = idiv(dp_hc(R),GCD); CR = idiv(dp_hc(G),GCD);
				U = CG*G-dp_weyl_mul(CR*dp_subd(G,R),R);
				if ( !U )
					return [D,M];
				D *= CG; M *= CG;
				break;
			}
		}
		if ( U )
			G = U;
		else {
			D += dp_hm(G); G = dp_rest(G);
		}
	}
	return [D,M];
}

def weyl_nf_quo_check(G,PS,R)
{
	D = R[0]; M = R[1]; Coef = R[2];	
	Len = length(PS);
	T = 0;
	for ( I = 0; I < Len; I++ )
		T += dp_weyl_mul(Coef[I],PS[I]);
	return (M*G-T)==D;
}

def weyl_nf_quo(B,G,M,PS)
{
	Len = length(PS);
	Coef = vector(Len);
	for ( D = 0; G; ) {
		for ( U = 0, L = B; L != []; L = cdr(L) ) {
			if ( dp_redble(G,R=PS[car(L)]) > 0 ) {
				GCD = igcd(dp_hc(G),dp_hc(R));
				CG = idiv(dp_hc(R),GCD); CR = idiv(dp_hc(G),GCD);
				for ( I = 0; I < Len; I++ ) Coef[I] *= CG;
				Q = CR*dp_subd(G,R);
				Coef[car(L)] += Q;
				U = CG*G-dp_weyl_mul(Q,R);
				D *= CG; M *= CG;
				if ( !U )
					return [D,M,Coef];
				break;
			}
		}
		if ( U )
			G = U;
		else {
			D += dp_hm(G); G = dp_rest(G);
		}
	}
	return [D,M,Coef];
}

def weyl_nf_mod(B,G,PS,Mod)
{
	for ( D = 0; G; ) {
		for ( U = 0, L = B; L != []; L = cdr(L) ) {
			if ( dp_redble(G,R=PS[car(L)]) > 0 ) {
				CR = dp_hc(G)/dp_hc(R);
				U = G-dp_weyl_mul_mod(CR*dp_mod(dp_subd(G,R),Mod,[]),R,Mod);
				if ( !U )
					return D;
				break;
			}
		}
		if ( U )
			G = U;
		else {
			D += dp_hm(G); G = dp_rest(G);
		}
	}
	return D;
}

def b_subst(F,V)
{
	D = deg(F,V);
	C = newvect(D+1);
	for ( I = D; I >= 0; I-- )
		C[I] = coef(F,I,V);
	for ( I = 0, R = 0; I <= D; I++ )
		if ( C[I] )
			R += C[I]*v_factorial(V,I);
	return R;
}

def v_factorial(V,N)
{
	for ( J = N-1, R = 1; J >= 0; J-- )
		R *= V-J;
	return R;
}

def w_tdeg(F,V,W)
{
	dp_set_weight(newvect(length(W),W));
	T = dp_ptod(F,V);
	for ( R = 0; T; T = cdr(T) ) {
		D = dp_td(T);
		if ( D > R ) R = D;
	}
	return R;
}

def replace_vars_f(F)
{
	return subst(F,s,TMP_S,t,TMP_T,y1,TMP_Y1,y2,TMP_Y2);
}

def replace_vars_v(V)
{
	V = replace_var(V,s,TMP_S);
	V = replace_var(V,t,TMP_T);
	V = replace_var(V,y1,TMP_Y1);
	V = replace_var(V,y2,TMP_Y2);
	return V;
}

def replace_var(V,X,Y)
{
	V = reverse(V);
	for ( R = []; V != []; V = cdr(V) ) {
		Z = car(V);
		if ( Z == X )
			R = cons(Y,R);
		else
			R = cons(Z,R);
	}
	return R;
}

def action_on_gfs(P,V,GFS)
{
	for ( T = V, DV = []; T != []; T = cdr(T) )
		DV = cons(strtov("d"+rtostr(car(T))),DV);
	V = append(append(V,[s]),reverse(cons(ds,DV)));
	DP = dp_ptod(P,V);	
	N = length(V)/2;
	for ( I = N-1, V0 = []; I >= 0; I-- )
		V0 = cons(V[I],V0);
	R = [];
	for ( T = DP; T; T = dp_rest(T) )
		R = cons(action_on_gfs_1(dp_hm(T),N,V0,GFS),R);
	D = coef(car(R)[2],0);
	for ( T = cdr(R); T != []; T = cdr(T) ) {
		Di = coef(car(T)[2],0);
		if ( Di < D )
			D = Di;
	}
	F = GFS[1];
	for ( T = R, G = 0; T != []; T = cdr(T) )
		G += car(T)[0]*F^(car(T)[2]-(s+D));
	while ( 1 ) {
		G1 = tdiv(G,F);
		if ( G1 ) {
			G = G1;
			D++;
		} else
			return [G,F,s+D];
	}
}

def action_on_gfs_1(M,N,V,GFS)
{
	G = GFS[0];
	F = GFS[1];
	S = GFS[2];
	C = dp_hc(M);
	E = dp_etov(M);
	for ( I = 0; I < N; I++ ) {
		VI = V[I];
		C *= VI^E[I];
		DFVI = diff(F,VI);
		for ( J = 0, EI = E[I+N]; J < EI; J++, S-- )
			G = diff(G,VI)*F+S*G*DFVI;
	}
	return [C*G,F,S];
}

/* stratification */

def weyl_subst(F,P,V)
{
	VF = var(F);
	D = deg(F,VF);
	P = dp_ptod(P,V);
	One = dp_ptod(1,V);
	for ( R = 0, I = D; I >= 0; I-- )
		R = dp_weyl_mul(R,P)+coef(F,I,VF)*One;
	return dp_dtop(R,V);
}

def bfactor(F)
{
	L=length(F);
	for(I=0,B=1;I<L;I++)B*=F[I][0]^F[I][1];
	return fctr(B);
}

def gen_a(K)
{
	D = x^(K+1);
	W = [];
	for ( I = 1; I <= K; I++ ) {
		D += (V=strtov("u"+rtostr(K-I+1)))*x^(K-I);
		W = cons(I+1,cons(V,W));
	}
	F = res(x,D,diff(D,x));
	return [D,F,reverse(W)];
}

def gen_d(K)
{
	D = x^2*y+y^(K-1)+u1+u2*x+u3*x^2;
	W = reverse([u1,2*K-2,u2,K,u3,2]);
	U = [u3,u2,u1];
	for ( I = 4; I <= K; I++ ) {
		D += (V=strtov("u"+rtostr(I)))*y^(I-3);
		W = cons((2*K-2)-2*(I-3),cons(V,W));
		U = cons(V,U);
	}
	B = [D,diff(D,x),diff(D,y)];
	G = nd_gr_trace(B,append([x,y],U),1,1,0);
	G = nd_gr_trace(G,append([x,y],U),1,-1,[[0,2],[0,K]]);
	E = elimination(G,U);
	F = E[0];
	return [D,F,reverse(W)];
}

def gen_dm(K)
{
	D = x^2*y-y^(K-1)+u1+u2*x+u3*x^2;
	W = reverse([u1,2*K-2,u2,K,u3,2]);
	U = [u3,u2,u1];
	for ( I = 4; I <= K; I++ ) {
		D += (V=strtov("u"+rtostr(I)))*y^(I-3);
		W = cons((2*K-2)-2*(I-3),cons(V,W));
		U = cons(V,U);
	}
	B = [D,diff(D,x),diff(D,y)];
	G = nd_gr_trace(B,append([x,y],U),1,1,0);
	G = nd_gr_trace(G,append([x,y],U),1,-1,[[0,2],[0,K]]);
	E = elimination(G,U);
	F = E[0];
	return [D,F,reverse(W)];
}

def elimination(G,V)
	{
	ANS=[];
	NG=length(G);

	for (I=NG-1;I>=0;I--)
		{
		VSet=vars(G[I]);
		DIFF=setminus(VSet,V);

		if ( DIFF ==[] ) 
			{
			ANS=cons(G[I],ANS);
			}
		}
	return ANS;
	}

def weyl_ideal_quotient(B,F,VDV)
{
	T = ttttt; DT = dttttt;
	J = cons((1-T)*F,vtol(ltov(B)*T));
	N = length(VDV); N1 = N/2;
	for ( I = N1-1, V1 = []; I >= 0; I-- )
		V1 = cons(VDV[I],V1);
	for ( I = 0, VDV1 = VDV; I < N1; I++ ) VDV1 = cdr(VDV1);
	VDV1 = append(cons(T,V1),cons(DT,VDV1));
	O1 = [[0,1],[0,N+1]];
	GJ = nd_weyl_gr(J,VDV1,0,O1);
	R = elimination(GJ,VDV);
	return map(weyl_divide_by_right,R,F,VDV,0);
}

def bf_strat(F)
{
	if ( member(s,vars(F)) )
		error("ann : the variable 's' is reserved.");
	dp_ord(0);
	T0 = time();
	if ( type(Heu=getopt(heuristic)) == -1 ) Heu = 0;
	if ( type(Vord=getopt(vord)) == -1 || type(Vord) != 4 ) Vord = 0;
	if ( type(Wt=getopt(weight)) == -1 ) Wt = 0;
	if ( type(ElimIdeal=getopt(elimideal)) == -1 ) ElimIdeal = 0;
	L = in_ww(F|weight=Wt,heuristic=Heu,vord=Vord);
	T1 = time();
	print(["in_ww",(T1[0]+T1[1])-(T0[0]+T0[1])]);

	/* shortcuts */
	V = vars(F);
	dp_set_weight(0);       
	dp_ord(0);
	Sing = sing(F,V);
	if ( Sing[0] == 1 || Sing[0] == -1 ) {
		return [[[F],[1],[[s+1,1]]],[[0],[F],[]]];
	} else if ( zero_dim(Sing,V,0) ) {
		N = length(V);
		P0 = [];
		for ( I = 0; I < N; I++ ) {
			M = minipoly(Sing,V,0,V[I],TMP_S);
			MF = cdr(fctr(M));
			if ( length(MF) == 1 && deg(MF[0][0],TMP_S)==1 ) {
				P0 = cons(subst(MF[0][0],TMP_S,V[I]),P0);
			} else break;
		}
		if ( I == N ) {
			Indata = L[0]; AllData = L[1]; VData = L[2];
			GIN = Indata[0]; VDV = Indata[1]; WVDV = AllData[4];
			W = Indata[4];
			dp_set_weight(W);
			B = weyl_minipoly(GIN,VDV,0,WVDV);
			B = subst(B,s,-s-1);
			dp_set_weight(0);       
			return [
		  	  [P0,[1],cdr(fctr(B))],
		  	  [[F],P0,[[s+1,1]]],
			  [[0],[F],[]]
		    ];
		}
	}

	L2 = bf_strat_stage2(L);
	if ( ElimIdeal ) return L2;
	S = bf_strat_stage3(L2);
	R = [];
	for ( T = S; T != []; T = cdr(T) ) {
		Str = car(T);
		B = Str[2];
		B1 = [];
		for ( U = B; U != []; U = cdr(U) )
			B1 = cons([subst(car(U)[0],s,-s-1),car(U)[1]],B1);
		B1 = reverse(B1);
		R = cons([Str[0],Str[1],B1],R);
	}
	return reverse(R);
}

/* returns [QQ,V,V0,B,BF,W] */
/* QQ : ideal in C[x,s] (s=tdt), V=[x1,..,xn,t], V0 = [x1,..,xn] */
/* B : global b-function, BF : factor list of B, W : weight */

def bf_strat_stage2(L)
{
	T0 = time();
	InData = L[0]; VData = L[2];
	G1 = InData[0]; VDV = InData[1]; W = InData[4]; W0 = VData[4];
	N = length(VDV); N1 = N/2;
	V = InData[2]; DV = InData[3];
	T = VData[2]; DT = VData[3];
	V0 = VData[0]; DVR = VData[1];
	dp_set_weight(W);
	for ( I = 0; DVR != []; I++, DVR = cdr(DVR) ) {
		DVRV = cons(DT,append(cdr(DVR),V));
		M = elim_mat(VDV,DVRV);
		for ( K = 0; K < N; K++ )
			M[1][K] = W[K];
		dp_ord(0); D1 = map(dp_ptod,G1,VDV);
		H1 = map(dp_ht,D1); HC1 = map(dp_hc,D1);
		dp_ord(M); H2 = map(dp_ht,map(dp_ptod,G1,VDV));
		if ( H1 == H2 )
			G2 = G1;
		else
			G2 = nd_gb_candidate(G1,VDV,M,0,HC1,1);
		G1 = elimination(G2,DVRV);
	}
	T1 = time();
	B = weyl_minipoly(G1,VDV,0,T*DT);
	T2 = time();
	BF = cdr(fctr(B));

	dp_set_weight(0);
	G1 = map(psi0,G1,T,DT);
	QQ = map(subst,map(b_subst,map(subst,G1,DT,1),T),T,var(B));
	if ( type(getopt(ideal)) != -1 ) return [QQ,V];
	print(["elim",(T1[0]+T1[1])-(T0[0]+T0[1])]);
	print(["globalb",(T2[0]+T2[1])-(T1[0]+T1[1])]);
	return [QQ,V,V0,B,BF,W0,DV];
}

def bf_strat_stage3(L)
{
	T0 = time();
	QQ = L[0]; V0 = L[2]; B = L[3]; BF = L[4]; W0 = L[5];
	NF = length(BF);
	Data = vector(NF);
	W1 = W0? cons(1,append(W0,[1])) : 0;
	for ( I = J = 0; I < NF; I++ ) {
		DI = tower_in_p(QQ,B,BF[I],V0,W0);
		NDI = length(DI);
		dp_set_weight(W1);
		for ( K = 0; K < J; K++ ) {
			if ( length(DK=Data[K]) == NDI ) {
				for ( L = 0; L < NDI; L++ ) {
					CL = DI[L][1]; CK = DK[L][1];
					if ( !zero_inclusion(CL,CK,V0) 
						|| !zero_inclusion(CK,CL,V0) ) break;
				}
				if ( L == NDI ) break;
			}
		}
		dp_set_weight(0);
		if ( K < J ) {
			for ( L = 0, T = []; L < NDI; L++ ) {
#if 0
				NewId = DK[L][1];
#else
				NewId = ideal_intersection(DK[L][1],DI[L][1],V0,0);
#endif
				T = cons([[DK[L][0][0]*DI[L][0][0],DK[L][0][1]],
					NewId,DK[L][2]],T);
			}
			Data[K] = reverse(T);
		} else
			Data[J++] = DI;
	}
	Data1 = vector(J);
	for ( I = 0; I < J; I++ )
		Data1[I] = Data[I];
	T1 = time();
	Str = stratify_bf(Data1,V0,W0);
	T2 = time();
	print(["tower",(T1[0]+T1[1])-(T0[0]+T0[1])]);
	print(["strat",(T2[0]+T2[1])-(T1[0]+T1[1])]);
	return Str;
}

/*
 InData = [GIN,VDV,V,DV,WtV]
 AllData = [G0,GIN0,VDV0,W,WVDV,WtV0]
*/

def bf_local(F,P)
{
	if ( member(s,vars(F)) )
		error("ann : the variable 's' is reserved.");
	/* F -> F/Fcont */
	F1 = ptozp(F); Fcont = sdiv(F,F1); F = F1;
	if ( type(Heu=getopt(heuristic)) == -1 ) Heu = 0;
	if ( type(Vord=getopt(vord)) == -1 || type(Vord) != 4 ) Vord = 0;
	if ( type(Wt=getopt(weight)) == -1 ) Wt = 0;
	if ( type(Op=getopt(op)) == -1 ) Op = 0;
	L = in_ww(F|weight=Wt,heuristic=Heu,vord=Vord);
	InData = L[0]; AllData = L[1]; VData = L[2];
	G = InData[0]; VDV = InData[1];  
	V = InData[2]; DV = InData[3];

	V0 = VData[0]; DV0 = VData[1]; T = VData[2]; DT = VData[3]; W0 = VData[4];

	L2 = bf_strat_stage2(L);

/* L2 = [QQ,V,V0,B,BF,W] */
/* QQ : ideal in C[x,s] (s=tdt), V=[t,x1,..,xn], V0 = [x1,..,xn] */
/* B : global b-function, BF : factor list of B, W : weight */

	QQ = L2[0]; B = L2[3]; BF = L2[4]; W = L2[5];

	NF = length(BF);
	BP = [];
	dp_set_weight(0);
	for ( I = J = 0; I < NF; I++ ) {
		List = compute_exponent(QQ,B,BF[I],P,V0,W0);
		DI = List[0]; QQI = List[1];
		if ( DI )
			BP = cons([BF[I][0],DI],BP);
		if ( I == 0 )
			Id = QQI;
		else
			Id = ideal_intersection(Id,QQI,V0,0);
	}
	for ( List = Id; List != []; List = cdr(List) )
		if ( subst_vars(car(List),P) )
			break;
	if ( List == [] ) error("bf_local : inconsitent intersection");		
	Ax = car(List);
	LB = [];
	for ( BPT = 1, List = BP; List != []; List = cdr(List) ) {
		BPT *= car(List)[0]^car(List)[1];
		LB = cons([subst(car(List)[0],s,-s-1),car(List)[1]],LB);
	}
	LB = reverse(LB);
	if ( !Op ) return LB;

	BPT = weyl_subst(BPT,T*DT,VDV);

	/* computation using G0,GIN0,VDV0 */
	G0 = AllData[0]; GIN0 = AllData[1]; VDV0 = AllData[2]; WtV0 = AllData[5];
	dp_set_weight(WtV0); dp_ord(0);
	PS = map(dp_ptod,GIN0,VDV0); Len = length(PS);
	for ( I = Len-1, Ind = []; I >= 0; I-- ) Ind = cons(I,Ind);
	/* QR = [D,M,Coef] */
	AxBPT = dp_ptod(Ax*BPT,VDV0);
	QR = weyl_nf_quo(Ind,AxBPT,1,PS);
	if ( !weyl_nf_quo_check(AxBPT,PS,QR) ) error("bf_local : invalid quotient");
	if ( QR[0] ) error("bf_local : invalid quotient");
	Den = QR[1]; Coef = QR[2];
	for ( I = 0, R = Den*AxBPT; I < Len; I++ )
		R -= dp_weyl_mul(Coef[I],dp_ptod(G0[I],VDV0));
	R = dp_dtop(R,VDV0);
	CR = conv_tdt(R,F,V0,DV0,T,DT);

	dp_set_weight(0);
	Cont = cont(CR); CR /= Cont; 
	Cont *= dn(Fcont); Den *= nm(Fcont);
	Gcd = igcd(Den,Cont);
	return [LB,(Den/Gcd)*Ax,(Cont/Gcd)*CR];
}

/* t^(l+k)*dt^l (k>l) -> (s-k)(s-k-1)...(s-(k+l-1))t^k */
def conv_tdt(P,F,V0,DV0,T,DT)
{
	DP = dp_ptod(P,[T,DT]);
	VDV = append(cons(T,V0),cons(DT,DV0));
	R = 0;
	DF = dp_ptod(F,VDV);
	for ( ; DP; DP = dp_rest(DP) ) {
		C = dp_hc(DP);
		E = dp_etov(dp_ht(DP));
		L = E[1]; K = E[0]-E[1];
		S = 1;
		for ( I = 0; I < L; I++ )
			S *= ((-T-1)-K-I);
		U = dp_ptod(C*S,VDV);
		for ( I = 1; I < K; I++ )
			U = dp_weyl_mul(U,DF);
		R += dp_dtop(U,VDV);
	}
	return subst(R,T,s);
}

/* W1=[W,1], W2=[1,W,1] */

def merge_tower(Str,Tower,V,W1,W2)
{
	Prev = car(Tower); T = cdr(Tower);
	Str1 = [];
	for ( ; T != []; T = cdr(T) ) {
		Cur = car(T);
		Str1 = cons([Cur[1],Prev[1],[Prev[0]]],Str1);
		Prev = Cur;
	}
	Str1 = cons([[0],Prev[1],[]],Str1);
	Str1 = reverse(Str1);
	if ( Str == [] ) return Str1;
	U = [];
	for ( T = Str; T != []; T = cdr(T) ) {
		for ( S = Str1; S != []; S = cdr(S) ) {
			Int = int_cons(T[0],S[0],V,W1,W2);
			if ( Int[0] != [1] )
				U = cons(append(Int,[append(T[0][2],S[0][2])]),U);
		}
	}
	U = reverse(U);
	return U;
}

def stratify_bf(Data,V,W)
{
	N = length(Data);
	R = [];
	if ( W ) {
		W1 = append(W,[1]);
		W2 = cons(1,W1);
	} else
		W1 = W2 = 0;
	for ( I = 0; I < N; I++ )
		R = merge_tower(R,Data[I],V,W1,W2);
	return R;
}

def tdt_homogenize(F,L)
{
	TY1 = L[0]; T = TY1[0]; Y1 = TY1[1];
	TY2 = L[1]; DT = TY2[0]; Y2 = TY2[1];
	DF = dp_ptod(F,[T,DT]);
	for ( R = 0; DF; DF = dp_rest(DF) ) {
		M = dp_hm(DF);
		E = dp_etov(M);
		W = E[1]-E[0];
		if ( W > 0 ) R += Y1^W*dp_dtop(M,[T,DT]);
		else R += Y2^W*dp_dtop(M,[T,DT]);
	}
	return R;
}

def sing(F,V)
{
	R = [F];
	for ( T = V; T != []; T = cdr(T) )
		R = cons(diff(F,car(T)),R);
	G = nd_gr_trace(R,V,1,1,0);
	return G;
}

def tower_in_p(B,F,FD,V,W)
{
	TT = ttttt;
	N = length(V); S = var(F); SV = cons(S,V); V1 = cons(TT,SV);
	Wt = append(append([1,1],W),[1]);
	dp_set_weight(Wt);

	F1 = FD[0]; D = FD[1];
	O1 = [[0,1],[0,N+1]]; O2 = [[0,1],[0,N]];

	TF = sdiv(F,F1^D);

	T = nd_gr_trace(cons((1-TT)*TF,vtol(TT*ltov(B))),V1,1,1,O1);
	T = elimination(T,SV);
	Q = map(sdiv,T,TF);
	dp_set_weight(cdr(Wt));
	QQ = elimination(nd_gr(Q,SV,0,O2),V);
	E = [[[F1,0],QQ,PD]];

	for ( I = D-1; I >= 0; I-- ) {
	    dp_set_weight(Wt);
		T = nd_gr_trace(cons((1-TT)*F1,vtol(TT*ltov(Q))),V1,1,1,O1);
		T = elimination(T,SV);
		Q = map(sdiv,T,F1);
	    dp_set_weight(cdr(Wt));
		QQ = elimination(nd_gr(Q,SV,0,O2),V);
		E = cons([[F1,D-I],QQ,PD],E);
	}
	dp_set_weight(0);
	return E;
}

def subst_vars(F,P)
{
	for ( ; P != []; P = cdr(cdr(P)) )
		F = subst(F,P[0],P[1]);
	return F;
}

def compute_exponent(B,F,FD,P,V,W)
{
	TT = ttttt;
	N = length(V); S = var(F); SV = cons(S,V); V1 = cons(TT,SV);
	F1 = FD[0]; D = FD[1];

	Wt = append(append([1,1],W),[1]);
	dp_set_weight(Wt);
	O1 = [[0,1],[0,N+1]]; O2 = [[0,1],[0,N]];

	TF = sdiv(F,F1^D);

	T = nd_gr_trace(cons((1-TT)*TF,vtol(TT*ltov(B))),V1,0,1,O1);
	T = elimination(T,SV);
	Q = map(sdiv,T,TF);
	QQ = elimination(nd_gr(Q,SV,0,O2),V);

	for ( I = 0; I < D; I++ ) {
		for ( T = QQ; T != []; T = cdr(T) )
			if ( subst_vars(car(T),P) ) {
				dp_set_weight(0);
				return [I,QQ];
			}
		T = nd_gr_trace(cons((1-TT)*F1,vtol(TT*ltov(Q))),V1,0,1,O1);
		T = elimination(T,SV);
		Q = map(sdiv,T,F1);
		QQ = elimination(nd_gr(Q,SV,0,O2),V);
	}
	dp_set_weight(0);
	return [D,QQ];
}

/* V(B) subset V(A) ? */

def zero_inclusion(A,B,V)
{
	NV = ttttt;
	for ( T = A; T != []; T = cdr(T) ) {
		F = car(T);
		G = nd_gr_trace(cons(NV*F-1,B),cons(NV,V),1,1,0);
		if ( type(car(G)) != 1 ) return 0;
	}
	return 1;
}

def weyl_divide_by_right(G,H,V,O)
{
	dp_ord(O); G = dp_ptod(G,V); H = dp_ptod(H,V);
	CH = dp_hc(H);
	for ( Q = 0; G; ) {
		if ( !dp_redble(G,H) ) return 0;
		CG = dp_hc(G);
		Q1 = CG/CH*dp_subd(G,H);
		G -= dp_weyl_mul(Q1,H);
		Q += Q1;
	}
	return dp_dtop(Q,V);
}

def elim_mat(V,W)
{
	N = length(V);
	M = matrix(N+1,N);
	for ( J = 0; J < N; J++ ) if ( !member(V[J],W) ) M[0][J] = 1;
	for ( J = 0; J < N; J++ ) M[1][J] = 1;
	for ( I = 2; I <= N; I++ ) M[I][N-I+1] = -1;
	return M;
}

/* (P-Q)cap(R-S)=(P cap Q^c)cap(R cap S^c)=(P cap R)cap(Q cup S)^c
   =(P cap R)-(Q cup S)
*/

def int_cons(A,B,V,W1,W2)
{
	AZ = A[0]; AN = A[1];
	BZ = B[0]; BN = B[1];
	if ( W1 ) dp_set_weight(W1);
	CZ = nd_gr_trace(append(AZ,BZ),V,1,1,0);
	if ( W2 ) dp_set_weight(W2);
	CN = ideal_intersection(AN,BN,V,0);
	ZI = zero_inclusion(CN,CZ,V);
	dp_set_weight(0);
	if ( ZI )
		return [[1],[]];
	else
		return [CZ,CN];
}

def ideal_intersection(A,B,V,Ord)
{
	T = ttttt;
	G = nd_gr_trace(append(vtol(ltov(A)*T),vtol(ltov(B)*(1-T))),
		cons(T,V),1,1,[[0,1],[Ord,length(V)]]);
	return elimination(G,V);
}

def nd_gb_candidate(G,V,Ord,Homo,HC,Weyl)
{
	Ind = 0;
	N = length(HC);
	while ( 1 ) {
		P = lprime(Ind++);
		for ( I = 0; I < N; I++ )
			if ( !(HC[I]%P) ) break;
		if ( I < N ) continue;
		if ( Weyl )
			G = nd_weyl_gr_trace(G,V,Homo,-P,Ord);
		else
			G = nd_gr_trace(G,V,Homo,-P,Ord);
		if ( G ) return G;
	}
}

endmodule $
end$