version 1.2, 1999/12/21 02:47:30 |
version 1.3, 2000/03/10 07:18:40 |
|
|
@comment $OpenXM$ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/algnum.texi,v 1.2 1999/12/21 02:47:30 noro Exp $ |
\BJP |
\BJP |
@node $BBe?tE*?t$K4X$9$k1i;;(B,,, Top |
@node $BBe?tE*?t$K4X$9$k1i;;(B,,, Top |
@chapter $BBe?tE*?t$K4X$9$k1i;;(B |
@chapter $BBe?tE*?t$K4X$9$k1i;;(B |
Line 502 where the ground field is a multiple extension. |
|
Line 502 where the ground field is a multiple extension. |
|
[65] P1=75*x^2+(150*B+10*A^7-175*A^4-395*A)*x+(75*B^2+(10*A^7-175*A^4-395*A)*B |
[65] P1=75*x^2+(150*B+10*A^7-175*A^4-395*A)*x+(75*B^2+(10*A^7-175*A^4-395*A)*B |
+13*A^8-220*A^5-581*A^2)$ |
+13*A^8-220*A^5-581*A^2)$ |
[66] P2=x^2+A*x+A^2$ |
[66] P2=x^2+A*x+A^2$ |
[67] cr_gcda(P1,P2,[B,A]); |
[67] cr_gcda(P1,P2); |
27*x+((#0^6-19*#0^3-65)*#1-#0^7+19*#0^4+38*#0) |
27*x+((#0^6-19*#0^3-65)*#1-#0^7+19*#0^4+38*#0) |
@end example |
@end example |
|
|
Line 1074 substitutes a @b{root} for the associated indeterminat |
|
Line 1074 substitutes a @b{root} for the associated indeterminat |
|
@findex cr_gcda |
@findex cr_gcda |
|
|
@table @t |
@table @t |
@item cr_gcda(@var{poly1},@var{poly2},@var{alist}) |
@item cr_gcda(@var{poly1},@var{poly2}) |
\JP :: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$N(B GCD |
\JP :: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$N(B GCD |
\EG :: GCD of two uni-variate polynomials over an algebraic number field. |
\EG :: GCD of two uni-variate polynomials over an algebraic number field. |
@end table |
@end table |
Line 1086 substitutes a @b{root} for the associated indeterminat |
|
Line 1086 substitutes a @b{root} for the associated indeterminat |
|
@item poly1, poly2 |
@item poly1, poly2 |
\JP $BB?9`<0(B |
\JP $BB?9`<0(B |
\EG polynomial |
\EG polynomial |
@item alist |
|
\JP $B%j%9%H(B |
|
\EG list |
|
@end table |
@end table |
|
|
@itemize @bullet |
@itemize @bullet |
Line 1098 substitutes a @b{root} for the associated indeterminat |
|
Line 1095 substitutes a @b{root} for the associated indeterminat |
|
@item |
@item |
\JP 2 $B$D$N(B 1 $BJQ?tB?9`<0$N(B GCD $B$r5a$a$k(B. |
\JP 2 $B$D$N(B 1 $BJQ?tB?9`<0$N(B GCD $B$r5a$a$k(B. |
\EG Finds the GCD of two uni-variate polynomials. |
\EG Finds the GCD of two uni-variate polynomials. |
@item |
|
\BJP |
|
@var{alist} $B$OF~NO$K8=$l$k(B @code{root} $B$*$h$S(B, $B$=$l$i$NDj5A$K4^$^$l$k(B |
|
@code{root} $B$r:F5"E*$K<h$j=P$7$FJB$Y$?%j%9%H(B. @var{a} $B$,(B @var{b} $B$N(B |
|
$BDj5A$K4^$^$l$F$$$k>l9g(B, @var{a} $B$O(B @var{b} $B$h$j8e(B ($B1&(B) $B$KJB$P$J$1$l$P(B |
|
$B$J$i$J$$(B. |
|
\E |
|
\BEG |
|
@var{alist} is a list of @b{root}'s. |
|
All the @b{root}'s appearing in the input and those required to define |
|
the @b{root}'s in the list must appear in the list. In the list |
|
,if the defining polynomial of @var{a} contains @var{b} |
|
then @var{a} must come first. |
|
\E |
|
@end itemize |
@end itemize |
|
|
@example |
@example |
Line 1119 then @var{a} must come first. |
|
Line 1102 then @var{a} must come first. |
|
[77] Y=x^6+6*x^5+24*x^4+8*x^3-48*x^2+384*x+1024$ |
[77] Y=x^6+6*x^5+24*x^4+8*x^3-48*x^2+384*x+1024$ |
[78] A=newalg(X); |
[78] A=newalg(X); |
(#0) |
(#0) |
[79] cr_gcda(X,subst(Y,x,x+A),[A]); |
[79] cr_gcda(X,subst(Y,x,x+A)); |
x+(-#0) |
x+(-#0) |
@end example |
@end example |
|
|