version 1.5, 2000/09/23 07:53:24 |
version 1.6, 2003/04/19 15:44:55 |
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/algnum.texi,v 1.4 2000/03/17 02:17:03 noro Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/algnum.texi,v 1.5 2000/09/23 07:53:24 noro Exp $ |
\BJP |
\BJP |
@node $BBe?tE*?t$K4X$9$k1i;;(B,,, Top |
@node $BBe?tE*?t$K4X$9$k1i;;(B,,, Top |
@chapter $BBe?tE*?t$K4X$9$k1i;;(B |
@chapter $BBe?tE*?t$K4X$9$k1i;;(B |
Line 1083 substitutes a @b{root} for the associated indeterminat |
|
Line 1083 substitutes a @b{root} for the associated indeterminat |
|
@item return |
@item return |
\JP $BB?9`<0(B |
\JP $BB?9`<0(B |
\EG polynomial |
\EG polynomial |
@item poly1, poly2 |
@item poly1 poly2 |
\JP $BB?9`<0(B |
\JP $BB?9`<0(B |
\EG polynomial |
\EG polynomial |
@end table |
@end table |
Line 1291 whose coefficients are in @code{Q(A(k+1),...,An)}. |
|
Line 1291 whose coefficients are in @code{Q(A(k+1),...,An)}. |
|
|
|
\BJP |
\BJP |
@code{af_noalg} $B$G$O(B, @var{poly} $B$K4^$^$l$kBe?tE*?t(B @var{ai} $B$rITDj85(B @var{vi} |
@code{af_noalg} $B$G$O(B, @var{poly} $B$K4^$^$l$kBe?tE*?t(B @var{ai} $B$rITDj85(B @var{vi} |
$B$GCV$-49$($k(B. @code{defpolylist} $B$O(B, @var{[[vn,dn(vn,...,v1)],...,[v1,d(v1)]]} |
$B$GCV$-49$($k(B. @code{defpolylist} $B$O(B, [[vn,dn(vn,...,v1)],...,[v1,d(v1)]] |
$B$J$k%j%9%H$G$"$k(B. $B$3$3$G(B @var{di(vi,...,v1)} $B$O(B @var{ai} $B$NDj5AB?9`<0$K$*$$$F(B |
$B$J$k%j%9%H$G$"$k(B. $B$3$3$G(B @var{di}(vi,...,v1) $B$O(B @var{ai} $B$NDj5AB?9`<0$K$*$$$F(B |
$BBe?tE*?t$rA4$F(B @var{vj} $B$KCV$-49$($?$b$N$G$"$k(B. |
$BBe?tE*?t$rA4$F(B @var{vj} $B$KCV$-49$($?$b$N$G$"$k(B. |
\E |
\E |
\BEG |
\BEG |
To call @code{sp_noalg}, one should replace each algebraic number |
To call @code{sp_noalg}, one should replace each algebraic number |
@var{ai} in @var{poly} with an indeterminate @var{vi}. @code{defpolylist} |
@var{ai} in @var{poly} with an indeterminate @var{vi}. @code{defpolylist} |
is a list @var{[[vn,dn(vn,...,v1)],...,[v1,d(v1)]]}. In this expression |
is a list [[vn,dn(vn,...,v1)],...,[v1,d(v1)]]. In this expression |
@var{di(vi,...,v1)} is a defining polynomial of @var{ai} represented |
@var{di}(vi,...,v1) is a defining polynomial of @var{ai} represented |
as a multivariate polynomial. |
as a multivariate polynomial. |
\E |
\E |
|
|