Annotation of OpenXM/src/asir-doc/parts/algnum.texi, Revision 1.1
1.1 ! noro 1: @node $BBe?tE*?t$K4X$9$k1i;;(B,,, Top
! 2: @chapter $BBe?tE*?t$K4X$9$k1i;;(B
! 3:
! 4: @menu
! 5: * $BBe?tE*?t$NI=8=(B::
! 6: * $BBe?tE*?t$N1i;;(B::
! 7: * $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B::
! 8: * $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B::
! 9: @end menu
! 10:
! 11: @node $BBe?tE*?t$NI=8=(B,,, $BBe?tE*?t$K4X$9$k1i;;(B
! 12: @section $BBe?tE*?t$NI=8=(B
! 13:
! 14: @noindent
! 15: @b{Asir} $B$K$*$$$F$O(B, $BBe?tBN$H$$$&BP>]$ODj5A$5$l$J$$(B.
! 16: $BFHN)$7$?BP>]$H$7$FDj5A$5$l$k$N$O(B, $BBe?tE*?t$G$"$k(B.
! 17: $BBe?tBN$O(B, $BM-M}?tBN$K(B, $BBe?tE*?t$rM-8B8D(B
! 18: $B=g<!E:2C$7$?BN$H$7$F2>A[E*$KDj5A$5$l$k(B. $B?7$?$JBe?tE*?t$O(B, $BM-M}?t$*$h$S(B
! 19: $B$3$l$^$GDj5A$5$l$?Be?tE*?t$NB?9`<0$r78?t$H$9$k(B 1 $BJQ?tB?9`<0(B
! 20: $B$rDj5AB?9`<0$H$7$FDj5A$5$l$k(B. $B0J2<(B, $B$"$kDj5AB?9`<0$N:,$H$7$F(B
! 21: $BDj5A$5$l$?Be?tE*?t$r(B, @code{root} $B$H8F$V$3$H$K$9$k(B.
! 22:
! 23: @example
! 24: [0] A0=newalg(x^2+1);
! 25: (#0)
! 26: [1] A1=newalg(x^3+A0*x+A0);
! 27: (#1)
! 28: [2] [type(A0),ntype(A0)];
! 29: [1,2]
! 30: @end example
! 31:
! 32: @noindent
! 33: $B$3$NNc$G$O(B, @code{A0} $B$O(B @code{x^2+1=0} $B$N:,(B, @code{A1} $B$O(B, $B$=$N(B @code{A0}
! 34: $B$r78?t$K4^$`(B @code{x^3+A0*x+A0=0} $B$N:,$H$7$FDj5A$5$l$F$$$k(B.
! 35:
! 36: @noindent
! 37: @code{newalg()} $B$N0z?t$9$J$o$ADj5AB?9`<0$K$O<!$N$h$&$J@)8B$,$"$k(B.
! 38:
! 39: @enumerate
! 40: @item
! 41: $BDj5AB?9`<0$O(B 1 $BJQ?tB?9`<0$G$J$1$l$P$J$i$J$$(B.
! 42:
! 43:
! 44: @item
! 45: @code{newalg()} $B$N0z?t$G$"$kDj5AB?9`<0$O(B, $BBe?tE*?t$r4^$`<0$N4JC12=$N$?(B
! 46: $B$a$KMQ$$$i$l$k(B. $B$3$N4JC12=$O(B, $BAH$_9~$_H!?t(B @code{srem()} $B$KAjEv$9$kFb(B
! 47: $BIt%k!<%A%s$rMQ$$$F9T$o$l$k(B. $B$3$N$?$a(B, $BDj5AB?9`<0$N<g78?t$O(B, $BM-M}?t$K(B
! 48: $B$J$C$F$$$kI,MW$,$"$k(B.
! 49:
! 50: @item
! 51: $BDj5AB?9`<0$N78?t$O(B $B$9$G$KDj5A$5$l$F$$$k(B @code{root} $B$NM-M}?t78?tB?9`<0(B
! 52: $B$G$J$1$l$P$J$i$J$$(B.
! 53:
! 54: @item
! 55: $BDj5AB?9`<0$O(B, $B$=$N78?t$K4^$^$l$kA4$F$N(B @code{root} $B$rM-M}?t$KE:2C$7$?(B
! 56: $BBN>e$G4{Ls$G$J$1$l$P$J$i$J$$(B.
! 57: @end enumerate
! 58:
! 59: @noindent
! 60: @code{newalg()} $B$,9T$&0z?t%A%'%C%/$O(B, 1 $B$*$h$S(B 2 $B$N$_$G$"$k(B.
! 61: $BFC$K(B, $B0z?t$NDj5AB?9`<0$N4{Ls@-$OA4$/%A%'%C%/$5$l$J$$(B. $B$3$l$O(B
! 62: $B4{Ls@-$N%A%'%C%/$,B?Bg$J7W;;NL$rI,MW$H$9$k$?$a$G(B, $B$3$NE@$K4X$7$F$O(B,
! 63: $B%f!<%6$N@UG$$KG$$5$l$F$$$k(B.
! 64:
! 65: @noindent
! 66: $B0lC6(B @code{newalg()} $B$K$h$C$FDj5A$5$l$?Be?tE*?t$O(B, $B?t$H$7$F$N<1JL;R$r;}$A(B,
! 67: $B$^$?(B, $B?t$NCf$G$OBe?tE*?t$H$7$F$N<1JL;R$r;}$D(B. (@code{type()}, @code{vtype()}
! 68: $B;2>H(B.) $B$5$i$K(B, $BM-M}?t$H(B, @code{root} $B$NM-M}<0$bF1MM$KBe?tE*?t$H$J$k(B.
! 69:
! 70: @example
! 71: [87] N=(A0^2+A1)/(A1^2-A0-1);
! 72: ((#1+#0^2)/(#1^2-#0-1))
! 73: [88] [type(N),ntype(N)];
! 74: [1,2]
! 75: @end example
! 76:
! 77: @noindent
! 78: $BNc$+$i$o$+$k$h$&$K(B, @code{root}$B$O(B @code{#@var{n}}
! 79: $B$HI=<($5$l$k(B. $B$7$+$7(B, $B%f!<%6$O$3$N7A$G$OF~NO$G$-$J$$(B. @code{root} $B$O(B
! 80: $BJQ?t$K3JG<$7$FMQ$$$k$+(B, $B$"$k$$$O(B @code{alg(@var{n})} $B$K$h$j<h$j=P$9(B.
! 81: $B$^$?(B, $B8zN($OMn$A$k$,(B, $BA4$/F1$80z?t(B ($BJQ?t$O0[$J$C$F$$$F$b$h$$(B) $B$K$h$j(B
! 82: @code{newalg()} $B$r8F$Y$P(B, $B?7$7$$Be?tE*?t$ODj5A$5$l$:$K4{$KDj5A$5$l$?(B
! 83: $B$b$N$,F@$i$l$k(B.
! 84:
! 85: @example
! 86: [90] alg(0);
! 87: (#0)
! 88: [91] newalg(t^2+1);
! 89: (#0)
! 90: @end example
! 91:
! 92: @noindent
! 93: @code{root} $B$NDj5AB?9`<0$O(B, @code{defpoly()} $B$K$h$j<h$j=P$;$k(B.
! 94:
! 95: @example
! 96: [96] defpoly(A0);
! 97: t#0^2+1
! 98: [97] defpoly(A1);
! 99: t#1^3+t#0*t#1+t#0
! 100: @end example
! 101:
! 102: @noindent
! 103: $B$3$3$G8=$l$?(B, @code{t#0}, @code{t#1} $B$O$=$l$>$l(B @code{#0}, @code{#1} $B$K(B
! 104: $BBP1~$9$kITDj85$G$"$k(B. $B$3$l$i$b%f!<%6$,F~NO$9$k$3$H$O$G$-$J$$(B.
! 105: @code{var()} $B$G<h$j=P$9$+(B, $B$"$k$$$O(B @code{algv(@var{n})} $B$K$h$j<h$j=P$9(B.
! 106:
! 107: @example
! 108: [98] var(@@);
! 109: t#1
! 110: [99] algv(0);
! 111: t#0
! 112: [100]
! 113: @end example
! 114:
! 115: @node $BBe?tE*?t$N1i;;(B,,, $BBe?tE*?t$K4X$9$k1i;;(B
! 116: @section $BBe?tE*?t$N1i;;(B
! 117:
! 118: @noindent
! 119: $BA0@a$G(B, $BBe?tE*?t$NI=8=(B, $BDj5A$K$D$$$F=R$Y$?(B. $B$3$3$G$O(B, $BBe?tE*?t$rMQ$$$?(B
! 120: $B1i;;$K$D$$$F=R$Y$k(B. $BBe?tE*?t$K4X$7$F$O(B, $BAH$_9~$_H!?t$H$7$FDs6!$5$l$F$$$k(B
! 121: $B5!G=$O$4$/>/?t$G(B, $BBgItJ,$O%f!<%6Dj5AH!?t$K$h$j<B8=$5$l$F$$$k(B. $B%U%!%$%k(B
! 122: $B$O(B, @samp{sp} $B$G(B, @samp{gr} $B$HF1MM(B @b{Asir} $B$NI8=`%i%$%V%i%j%G%#%l%/%H%j(B
! 123: $B$K$*$+$l$F$$$k(B.
! 124:
! 125: @example
! 126: [0] load("gr")$
! 127: [1] load("sp")$
! 128: @end example
! 129:
! 130: @noindent
! 131: $B$"$k$$$O(B, $B>o$KMQ$$$k$J$i$P(B, @samp{$HOME/.asirrc} $B$K=q$$$F$*$/$N$b$h$$(B.
! 132:
! 133: @noindent
! 134: @code{root} $B$O(B $B$=$NB>$N?t$HF1MM(B, $B;MB'1i;;$,2DG=$H$J$k(B. $B$7$+$7(B, $BDj5AB?(B
! 135: $B9`<0$K$h$k4JC12=$O<+F0E*$K$O9T$o$l$J$$$N$G(B, $B%f!<%6$NH=CG$GE,599T$o(B
! 136: $B$J$1$l$P$J$i$J$$(B. $BFC$K(B, $BJ,Jl$,(B 0 $B$K$J$k>l9g$KCWL?E*$J%(%i!<$H$J$k$?$a(B,
! 137: $B<B:]$KJ,Jl$r;}$DBe?tE*?t$r@8@.$9$k>l9g$K$O:Y?4$NCm0U$,I,MW$H$J$k(B.
! 138:
! 139: @noindent
! 140: $BBe?tE*?t$N(B, $BDj5AB?9`<0$K$h$k4JC12=$O(B, @code{simpalg()} $B$G9T$&(B.
! 141:
! 142: @example
! 143: [49] T=A0^2+1;
! 144: (#0^2+1)
! 145: [50] simpalg(T);
! 146: 0
! 147: @end example
! 148:
! 149: @noindent
! 150: @code{simpalg()} $B$OM-M}<0$N7A$r$7$?Be?tE*?t$r(B, $BB?9`<0$N7A$K4JC12=$9$k(B.
! 151:
! 152: @example
! 153: [39] A0=newalg(x^2+1);
! 154: (#0)
! 155: [40] T=(A0^2+A0+1)/(A0+3);
! 156: ((#0^2+#0+1)/(#0+3))
! 157: [41] simpalg(T);
! 158: (3/10*#0+1/10)
! 159: [42] T=1/(A0^2+1);
! 160: ((1)/(#0^2+1))
! 161: [43] simpalg(T);
! 162: div : division by 0
! 163: stopped in invalgp at line 258 in file "/usr/local/lib/asir/sp"
! 164: 258 return 1/A;
! 165: (debug)
! 166: @end example
! 167:
! 168: @noindent
! 169: $B$3$NNc$G$O(B, $BJ,Jl$,(B 0 $B$NBe?tE*?t$r4JC12=$7$h$&$H$7$F(B 0 $B$K$h$k=|;;$,@8$8(B
! 170: $B$?$?$a(B, $B%f!<%6Dj5AH!?t$G$"$k(B @code{simpalg()} $B$NCf$G%G%P%C%,$,8F$P$l$?(B
! 171: $B$3$H$r<($9(B. @code{simpalg()} $B$O(B, $BBe?tE*?t$r78?t$H$9$kB?9`<0$N(B
! 172: $B3F78?t$r4JC12=$G$-$k(B.
! 173:
! 174: @example
! 175: [43] simpalg(1/A0*x+1/(A0+1));
! 176: (-#0)*x+(-1/2*#0+1/2)
! 177: @end example
! 178:
! 179: @noindent
! 180: $BBe?tE*?t$r78?t$H$9$kB?9`<0$N4pK\1i;;$O(B, $BE,59(B @code{simpalg()} $B$r8F$V$3$H$r(B
! 181: $B=|$1$PDL>o$N>l9g$HF1MM$G$"$k$,(B, $B0x?tJ,2r$J$I$GIQHK$KMQ$$$i$l$k%N%k%`$N(B
! 182: $B7W;;$J$I$K$*$$$F$O(B, @code{root} $B$rITDj85$KCV$-49$($kI,MW$,=P$F$/$k(B.
! 183: $B$3$N>l9g(B, @code{algptorat()} $B$rMQ$$$k(B.
! 184:
! 185: @example
! 186: [83] A0=newalg(x^2+1);
! 187: (#0)
! 188: [84] A1=newalg(x^3+A0*x+A0);
! 189: (#1)
! 190: [85] T=(2*A0+A1*A0+A1^2)*x+(1+A1)/(2+A0);
! 191: (#1^2+#0*#1+2*#0)*x+((#1+1)/(#0+2))
! 192: [86] S=algptorat(T);
! 193: (((t#0+2)*t#1^2+(t#0^2+2*t#0)*t#1+2*t#0^2+4*t#0)*x+t#1+1)/(t#0+2)
! 194: [87] algptorat(coef(T,1));
! 195: t#1^2+t#0*t#1+2*t#0
! 196: @end example
! 197:
! 198: @noindent
! 199: $B$3$N$h$&$K(B, @code{algptorat()} $B$O(B, $BB?9`<0(B, $B?t$K4^$^$l$k(B @code{root}
! 200: $B$r(B, $BBP1~$9$kITDj85(B, $B$9$J$o$A(B @code{#@var{n}} $B$KBP$9$k(B @code{t#@var{n}}
! 201: $B$KCV$-49$($k(B. $B4{$K=R$Y$?$h$&$K(B, $B$3$NITDj85$O%f!<%6$,F~NO$9$k$3$H$O$G$-$J$$(B.
! 202: $B$3$l$O(B, $B%f!<%6$NF~NO$7$?ITDj85$H(B, @code{root} $B$KBP1~$9$kITDj85$,0lCW(B
! 203: $B$7$J$$$h$&$K$9$k$?$a$G$"$k(B.
! 204:
! 205: @noindent
! 206: $B5U$K(B, @code{root} $B$KBP1~$9$kITDj85$r(B, $BBP1~$9$k(B @code{root} $B$KCV$-49$($k(B
! 207: $B$?$a$K$O(B @code{rattoalgp()} $B$rMQ$$$k(B.
! 208:
! 209: @example
! 210: [88] rattoalgp(S,[alg(0)]);
! 211: (((#0+2)/(#0+2))*t#1^2+((#0^2+2*#0)/(#0+2))*t#1+((2*#0^2+4*#0)/(#0+2)))*x
! 212: +((1)/(#0+2))*t#1+((1)/(#0+2))
! 213: [89] rattoalgp(S,[alg(0),alg(1)]);
! 214: (((#0^3+6*#0^2+12*#0+8)*#1^2+(#0^4+6*#0^3+12*#0^2+8*#0)*#1+2*#0^4+12*#0^3
! 215: +24*#0^2+16*#0)/(#0^3+6*#0^2+12*#0+8))*x+(((#0+2)*#1+#0+2)/(#0^2+4*#0+4))
! 216: [90] rattoalgp(S,[alg(1),alg(0)]);
! 217: (((#0+2)*#1^2+(#0^2+2*#0)*#1+2*#0^2+4*#0)/(#0+2))*x+((#1+1)/(#0+2))
! 218: [91] simpalg(@@89);
! 219: (#1^2+#0*#1+2*#0)*x+((-1/5*#0+2/5)*#1-1/5*#0+2/5)
! 220: [92] simpalg(@@90);
! 221: (#1^2+#0*#1+2*#0)*x+((-1/5*#0+2/5)*#1-1/5*#0+2/5)
! 222: @end example
! 223:
! 224: @noindent
! 225: @code{rattoalgp()} $B$O(B, $BCV49$NBP>]$H$J$k(B @code{root} $B$N%j%9%H$rBh(B 2 $B0z?t(B
! 226: $B$K$H$j(B, $B:8$+$i=g$K(B, $BBP1~$9$kITDj85$rCV$-49$($F9T$/(B. $B$3$NNc$O(B,
! 227: $BCV49$9$k=g=x$r49$($k$H4JC12=$r9T$o$J$$$3$H$K$h$j7k2L$,0l8+0[$J$k$,(B,
! 228: $B4JC12=$K$h$j<B$O0lCW$9$k$3$H$r<($7$F$$$k(B. @code{algptorat()},
! 229: @code{rattoalgp()} $B$O(B, $B%f!<%6$,FH<+$N4JC12=$r9T$$$?$$>l9g$J$I$K$b(B
! 230: $BMQ$$$k$3$H$,$G$-$k(B.
! 231:
! 232: @node $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B,,, $BBe?tE*?t$K4X$9$k1i;;(B
! 233: @section $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B
! 234:
! 235: @noindent
! 236: @samp{sp} $B$G$O(B, 1 $BJQ?tB?9`<0$K8B$j(B, GCD, $B0x?tJ,2r$*$h$S$=$l$i$N1~MQ$H$7$F(B
! 237: $B:G>.J,2rBN$r5a$a$kH!?t$rDs6!$7$F$$$k(B.
! 238:
! 239: @menu
! 240: * GCD::
! 241: * $BL5J?J}J,2r(B $B0x?tJ,2r(B::
! 242: * $B:G>.J,2rBN(B::
! 243: @end menu
! 244:
! 245: @node GCD,,, $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B
! 246: @subsection GCD
! 247:
! 248: @noindent
! 249: $BBe?tBN>e$G$N(B GCD $B$O(B @code{gcda()} $B$K$h$j7W;;$5$l$k(B.
! 250: $B$3$NH!?t$O%b%8%e%i1i;;$*$h$SCf9q>jM>DjM}$K$h$jBe?tBN>e$N(B GCD $B$r(B
! 251: $B7W;;$9$k$b$N$G(B, $BC`<!3HBg$KBP$7$F$bM-8z$G$"$k(B.
! 252:
! 253: @example
! 254: [63] A=newalg(t^9-15*t^6-87*t^3-125);
! 255: (#0)
! 256: [64] B=newalg(75*s^2+(10*A^7-175*A^4-470*A)*s+3*A^8-45*A^5-261*A^2);
! 257: (#1)
! 258: [65] P1=75*x^2+(150*B+10*A^7-175*A^4-395*A)*x+(75*B^2+(10*A^7-175*A^4-395*A)*B
! 259: +13*A^8-220*A^5-581*A^2)$
! 260: [66] P2=x^2+A*x+A^2$
! 261: [67] gcda(P1,P2,[B,A]);
! 262: 27*x+((#0^6-19*#0^3-65)*#1-#0^7+19*#0^4+38*#0)
! 263: @end example
! 264:
! 265: @node $BL5J?J}J,2r(B $B0x?tJ,2r(B,,, $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B
! 266: @subsection $BL5J?J}J,2r(B, $B0x?tJ,2r(B
! 267:
! 268: @noindent
! 269: $BL5J?J}J,2r$O(B, $BB?9`<0$H$=$NHyJ,$H$N(B GCD $B$N7W;;$+$i;O$^$k$b$C$H$b0lHLE*$J(B
! 270: $B%"%k%4%j%:%`$r:NMQ$7$F$$$k(B. $BH!?t$O(B @code{asq()} $B$G$"$k(B.
! 271:
! 272: @example
! 273: [116] A=newalg(x^2+x+1);
! 274: (#4)
! 275: [117] T=simpalg((x+A+1)*(x^2-2*A-3)^2*(x^3-x-A)^2);
! 276: x^11+(#4+1)*x^10+(-4*#4-8)*x^9+(-10*#4-4)*x^8+(16*#4+20)*x^7+(24*#4-6)*x^6
! 277: +(-29*#4-31)*x^5+(-15*#4+28)*x^4+(38*#4+29)*x^3+(#4-23)*x^2+(-21*#4-7)*x
! 278: +(3*#4+8)
! 279: [118] asq(T);
! 280: [[x^5+(-2*#4-4)*x^3+(-#4)*x^2+(2*#4+3)*x+(#4-2),2],[x+(#4+1),1]]
! 281: @end example
! 282:
! 283: @noindent
! 284: $B7k2L$ODL>o$HF1MM$K(B, [@b{$B0x;R(B}, @b{$B=EJ#EY(B}] $B$N%j%9%H$H$J$k$,(B, $BA4$F$N0x;R(B
! 285: $B$N@Q$O(B, $B$b$H$NB?9`<0$HDj?tG\$N:9$O$"$jF@$k(B. $B$3$l$O(B, $B0x;R$r@0?t78?t$K$7(B
! 286: $B$F8+$d$9$/$9$k$?$a$G(B, $B0x?tJ,2r$G$bF1MM$G$"$k(B.
! 287:
! 288: @noindent
! 289: $BBe?tBN>e$G$N0x?tJ,2r$O(B, Trager $B$K$h$k%N%k%`K!$r2~NI$7$?$b$N$G(B, $BFC$K(B
! 290: $B$"$kB?9`<0$KBP$7(B, $B$=$N:,$rE:2C$7$?BN>e$G$=$NB?9`<0<+?H$r0x?tJ,2r$9$k(B
! 291: $B>l9g$KFC$KM-8z$G$"$k(B.
! 292:
! 293: @example
! 294: [119] af(T,[A]);
! 295: [[x^3-x+(-#4),2],[x^2+(-2*#4-3),2],[x+(#4+1),1]]
! 296: @end example
! 297:
! 298: @noindent
! 299: $B0z?t$O(B 2 $B$D$G(B, $BBh(B 2 $B0z?t$O(B, @code{root} $B$N%j%9%H$G$"$k(B. $B0x?tJ,2r$O(B
! 300: $BM-M}?tBN$K(B, $B$=$l$i$N(B @code{root} $B$rE:2C$7$?BN>e$G9T$o$l$k(B.
! 301: @code{root} $B$N=g=x$K$O@)8B$,$"$k(B. $B$9$J$o$A(B, $B8e$GDj5A$5$l$?$b$N$[$I(B
! 302: $BA0$NJ}$K$3$J$1$l$P(B
! 303: $B$J$i$J$$(B. $BJB$Y49$($O(B, $B<+F0E*$K$O9T$o$l$J$$(B. $B%f!<%6$N@UG$$H$J$k(B.
! 304:
! 305: @noindent
! 306: $B%N%k%`$rMQ$$$?0x?tJ,2r$K$*$$$F$O(B, $B%N%k%`$N7W;;$H@0?t78?t(B 1 $BJQ?tB?9`<0$N(B
! 307: $B0x?tJ,2r$N8zN($,(B, $BA4BN$N8zN($r:81&$9$k(B. $B$3$N$&$A(B, $BFC$K9b<!$NB?9`<0(B
! 308: $B$N>l9g$K8e<T$K$*$$$FAH9g$;GzH/$K$h$j7W;;ITG=$K$J$k>l9g$,$7$P$7$P@8$:$k(B.
! 309:
! 310: @example
! 311: [120] B=newalg(x^2-2*A-3);
! 312: (#5)
! 313: [121] af(T,[B,A]);
! 314: [[x+(#5),2],[x^3-x+(-#4),2],[x+(-#5),2],[x+(#4+1),1]]
! 315: @end example
! 316:
! 317: @node $B:G>.J,2rBN(B,,, $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B
! 318: @subsection $B:G>.J,2rBN(B
! 319:
! 320: @noindent
! 321: $B$d$dFC<l$J1i;;$G$O$"$k$,(B, $BA0@a$N0x?tJ,2r$rH?I|E,MQ$9$k$3$H$K$h$j(B,
! 322: $BB?9`<0$N:G>.J,2rBN$r5a$a$k$3$H$,$G$-$k(B. $BH!?t$O(B @code{sp()} $B$G$"$k(B.
! 323:
! 324: @example
! 325: [103] sp(x^5-2);
! 326: [[x+(-#1),2*x+(#0^3*#1^3+#0^4*#1^2+2*#1+2*#0),2*x+(-#0^4*#1^2),2*x
! 327: +(-#0^3*#1^3),x+(-#0)],[[(#1),t#1^4+t#0*t#1^3+t#0^2*t#1^2+t#0^3*t#1+t#0^4],
! 328: [(#0),t#0^5-2]]]
! 329: @end example
! 330:
! 331: @noindent
! 332: @code{sp()} $B$O(B 1 $B0z?t$G(B, $B7k2L$O(B @code{[1 $B<!0x;R$N%j%9%H(B, [[root,
! 333: algptorat($BDj5AB?9`<0(B)] $B$N%j%9%H(B]} $B$J$k%j%9%H$G$"$k(B.
! 334: $BBh(B 2 $BMWAG$N(B @code{[root,algptorat($BDj5AB?9`<0(B)]} $B$N%j%9%H$O(B,
! 335: $B1&$+$i=g$K(B, $B:G>.J,2rBN$,F@$i$l$k$^$GE:2C$7$F$$$C$?(B @code{root} $B$r<($9(B.
! 336: $B$=$NDj5AB?9`<0$O(B, $B$=$ND>A0$^$G$N(B @code{root} $B$rE:2C$7$?BN>e$G4{Ls$G$"$k$3$H(B
! 337: $B$,J]>Z$5$l$F$$$k(B.
! 338:
! 339: @noindent
! 340: $B7k2L$NBh(B 1 $BMWAG$G$"$k(B 1 $B<!0x;R$N%j%9%H$O(B, $BBh(B 2 $BMWAG$N(B @code{root} $B$rA4$F(B
! 341: $BE:2C$7$?BN>e$G$N(B, @code{sp()} $B$N0z?t$NB?9`<0$NA4$F$N0x;R$rI=$9(B. $B$=$NBN$O(B
! 342: $B:G>.J,2rBN$H$J$C$F$$$k$N$G(B, $B0x;R$OA4$F(B 1 $B<!$H$J$k$o$1$G$"$k(B. @code{af()}
! 343: $B$HF1MM(B, $BA4$F$N0x;R$N@Q$O(B, $B$b$H$NB?9`<0$HDj?tG\$N:9$O$"$jF@$k(B.
! 344:
! 345:
! 346: @node $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B,,, $BBe?tE*?t$K4X$9$k1i;;(B
! 347: @section $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
! 348:
! 349: @menu
! 350: * newalg::
! 351: * defpoly::
! 352: * alg::
! 353: * algv::
! 354: * simpalg::
! 355: * algptorat::
! 356: * rattoalgp::
! 357: * gcda::
! 358: * sp_norm::
! 359: * asq af::
! 360: * sp::
! 361: @end menu
! 362:
! 363: @node newalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
! 364: @subsection @code{newalg}
! 365: @findex newalg
! 366:
! 367: @table @t
! 368: @item newalg(@var{defpoly})
! 369: :: @code{root} $B$r@8@.$9$k(B.
! 370: @end table
! 371:
! 372: @table @var
! 373: @item return
! 374: $BBe?tE*?t(B (@code{root})
! 375: @item defpoly
! 376: $BB?9`<0(B
! 377: @end table
! 378:
! 379: @itemize @bullet
! 380: @item
! 381: @var{defpoly} $B$rDj5AB?9`<0$H$9$kBe?tE*?t(B (@code{root}) $B$r@8@.$9$k(B.
! 382: @item
! 383: @var{defpoly} $B$KBP$9$k@)8B$K4X$7$F$O(B, @xref{$BBe?tE*?t$NI=8=(B}.
! 384: @end itemize
! 385:
! 386: @example
! 387: [0] A0=newalg(x^2-2);
! 388: (#0)
! 389: @end example
! 390:
! 391: @table @t
! 392: @item $B;2>H(B
! 393: @fref{defpoly}
! 394: @end table
! 395:
! 396: @node defpoly,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
! 397: @subsection @code{defpoly}
! 398: @findex defpoly
! 399:
! 400: @table @t
! 401: @item defpoly(@var{alg})
! 402: :: @code{root} $B$NDj5AB?9`<0$rJV$9(B.
! 403: @end table
! 404:
! 405: @table @var
! 406: @item return
! 407: $BB?9`<0(B
! 408: @item alg
! 409: $BBe?tE*?t(B (@code{root})
! 410: @end table
! 411:
! 412: @itemize @bullet
! 413: @item
! 414: @code{root} @var{alg} $B$NDj5AB?9`<0$rJV$9(B.
! 415: @item
! 416: @code{root} $B$r(B @code{#@var{n}} $B$H$9$l$P(B, $BDj5AB?9`<0$N<gJQ?t$O(B
! 417: @code{t#@var{n}} $B$H$J$k(B.
! 418: @end itemize
! 419:
! 420: @example
! 421: [1] defpoly(A0);
! 422: t#0^2-2
! 423: @end example
! 424:
! 425: @table @t
! 426: @item $B;2>H(B
! 427: @fref{newalg}, @fref{alg}, @fref{algv}
! 428: @end table
! 429:
! 430: @node alg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
! 431: @subsection @code{alg}
! 432: @findex alg
! 433:
! 434: @table @t
! 435: @item alg(@var{i})
! 436: :: $B%$%s%G%C%/%9$KBP1~$9$k(B @code{root} $B$rJV$9(B.
! 437: @end table
! 438:
! 439: @table @var
! 440: @item return
! 441: $BBe?tE*?t(B (@code{root})
! 442: @item i
! 443: $B@0?t(B
! 444: @end table
! 445:
! 446: @itemize @bullet
! 447: @item
! 448: @code{root} @code{#@var{i}} $B$rJV$9(B.
! 449: @item
! 450: @code{#@var{i}} $B$O%f!<%6$,D>@\F~NO$G$-$J$$$?$a(B, @code{alg(@var{i})} $B$H(B
! 451: $B$$$&7A$GF~NO$9$k(B.
! 452: @end itemize
! 453:
! 454: @example
! 455: [2] x+#0;
! 456: syntax error
! 457: 0
! 458: [3] alg(0);
! 459: (#0)
! 460: @end example
! 461:
! 462: @table @t
! 463: @item $B;2>H(B
! 464: @fref{newalg}, @fref{algv}
! 465: @end table
! 466:
! 467: @node algv,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
! 468: @subsection @code{algv}
! 469: @findex algv
! 470:
! 471: @table @t
! 472: @item algv(@var{i})
! 473: :: @code{alg(@var{i})} $B$KBP1~$9$kITDj85$rJV$9(B.
! 474: @end table
! 475:
! 476: @table @var
! 477: @item return
! 478: $BB?9`<0(B
! 479: @item i
! 480: $B@0?t(B
! 481: @end table
! 482:
! 483: @itemize @bullet
! 484: @item
! 485: $BB?9`<0(B @code{t#@var{i}} $B$rJV$9(B.
! 486: @item
! 487: @code{t#@var{i}} $B$O%f!<%6$,D>@\F~NO$G$-$J$$$?$a(B, @code{algv(@var{i})} $B$H(B
! 488: $B$$$&7A$GF~NO$9$k(B.
! 489: @end itemize
! 490:
! 491: @example
! 492: [4] var(defpoly(A0));
! 493: t#0
! 494: [5] t#0;
! 495: syntax error
! 496: 0
! 497: [6] algv(0);
! 498: t#0
! 499: @end example
! 500:
! 501: @table @t
! 502: @item $B;2>H(B
! 503: @fref{newalg}, @fref{defpoly}, @fref{alg}
! 504: @end table
! 505:
! 506: @node simpalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
! 507: @subsection @code{simpalg}
! 508: @findex simpalg
! 509:
! 510: @table @t
! 511: @item simpalg(@var{rat})
! 512: :: $BM-M}<0$K4^$^$l$kBe?tE*?t$r4JC12=$9$k(B.
! 513: @end table
! 514:
! 515: @table @var
! 516: @item return
! 517: $BM-M}<0(B
! 518: @item rat
! 519: $BM-M}<0(B
! 520: @end table
! 521:
! 522: @itemize @bullet
! 523: @item
! 524: @samp{sp} $B$GDj5A$5$l$F$$$k(B.
! 525: @item
! 526: $B?t(B, $BB?9`<0(B, $BM-M}<0$K4^$^$l$kBe?tE*?t$r(B, $B4^$^$l$k(B @code{root} $B$NDj5A(B
! 527: $BB?9`<0$K$h$j4JC12=$9$k(B.
! 528: @item
! 529: $B?t$N>l9g(B, $BJ,Jl$,$"$l$PM-M}2=$5$l(B, $B7k2L$O(B @code{root} $B$NB?9`<0$H$J$k(B.
! 530: @item
! 531: $BB?9`<0$N>l9g(B, $B3F78?t$,4JC12=$5$l$k(B.
! 532: @item
! 533: $BM-M}<0$N>l9g(B, $BJ,JlJ,;R$,B?9`<0$H$7$F4JC12=$5$l$k(B.
! 534: @end itemize
! 535:
! 536: @example
! 537: [7] simpalg((1+A0)/(1-A0));
! 538: simpalg undefined
! 539: return to toplevel
! 540: [7] load("sp")$
! 541: [46] simpalg((1+A0)/(1-A0));
! 542: (-2*#0-3)
! 543: [47] simpalg((2-A0)/(2+A0)*x^2-1/(3+A0));
! 544: (-2*#0+3)*x^2+(1/7*#0-3/7)
! 545: [48] simpalg((x+1/(A0-1))/(x-1/(A0+1)));
! 546: (x+(#0+1))/(x+(-#0+1))
! 547: @end example
! 548:
! 549: @node algptorat,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
! 550: @subsection @code{algptorat}
! 551: @findex algptorat
! 552:
! 553: @table @t
! 554: @item algptorat(@var{poly})
! 555: :: $BB?9`<0$K4^$^$l$k(B @code{root} $B$r(B, $BBP1~$9$kITDj85$KCV$-49$($k(B.
! 556: @end table
! 557:
! 558: @table @var
! 559: @item return
! 560: $BB?9`<0(B
! 561: @item poly
! 562: $BB?9`<0(B
! 563: @end table
! 564:
! 565: @itemize @bullet
! 566: @item
! 567: @samp{sp} $B$GDj5A$5$l$F$$$k(B.
! 568: @item
! 569: $BB?9`<0$K4^$^$l$k(B @code{root} @code{#@var{n}} $B$rA4$F(B @code{t#@var{n}} $B$K(B
! 570: $BCV$-49$($k(B.
! 571: @end itemize
! 572:
! 573: @example
! 574: [49] algptorat((-2*alg(0)+3)*x^2+(1/7*alg(0)-3/7));
! 575: (-2*t#0+3)*x^2+1/7*t#0-3/7
! 576: @end example
! 577:
! 578: @table @t
! 579: @item $B;2>H(B
! 580: @fref{defpoly}, @fref{algv}
! 581: @end table
! 582:
! 583: @node rattoalgp,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
! 584: @subsection @code{rattoalgp}
! 585: @findex rattoalgp
! 586:
! 587: @table @t
! 588: @item rattoalgp(@var{poly},@var{alglist})
! 589: :: $BB?9`<0$K4^$^$l$k(B @code{root} $B$KBP1~$9$kITDj85$r(B @code{root} $B$K(B
! 590: $BCV$-49$($k(B.
! 591: @end table
! 592:
! 593: @table @var
! 594: @item return
! 595: $BB?9`<0(B
! 596: @item poly
! 597: $BB?9`<0(B
! 598: @item alglist
! 599: $B%j%9%H(B
! 600: @end table
! 601:
! 602: @itemize @bullet
! 603: @item
! 604: @samp{sp} $B$GDj5A$5$l$F$$$k(B.
! 605: @item
! 606: $BBh(B 2 $B0z?t$O(B @code{root} $B$N%j%9%H$G$"$k(B. @code{rattoalgp()} $B$O(B, $B$3$N(B @code{root}
! 607: $B$KBP1~$9$kITDj85$r(B, $B$=$l$>$l(B @code{root} $B$KCV$-49$($k(B.
! 608: @end itemize
! 609:
! 610: @example
! 611: [51] rattoalgp((-2*algv(0)+3)*x^2+(1/7*algv(0)-3/7),[alg(0)]);
! 612: (-2*#0+3)*x^2+(1/7*#0-3/7)
! 613: @end example
! 614:
! 615: @table @t
! 616: @item $B;2>H(B
! 617: @fref{alg}, @fref{algv}
! 618: @end table
! 619:
! 620: @node gcda,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
! 621: @subsection @code{gcda}
! 622: @findex gcda
! 623:
! 624: @table @t
! 625: @item gcda(@var{poly1},@var{poly2},@var{alist})
! 626: :: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$N(B GCD
! 627: @end table
! 628:
! 629: @table @var
! 630: @item return
! 631: $BB?9`<0(B
! 632: @item poly1, poly2
! 633: $BB?9`<0(B
! 634: @item alist
! 635: $B%j%9%H(B
! 636: @end table
! 637:
! 638: @itemize @bullet
! 639: @item
! 640: @samp{sp} $B$GDj5A$5$l$F$$$k(B.
! 641: @item
! 642: 2 $B$D$N(B 1 $BJQ?tB?9`<0$N(B GCD $B$r5a$a$k(B.
! 643: @item
! 644: @var{alist} $B$OF~NO$K8=$l$k(B @code{root} $B$*$h$S(B, $B$=$l$i$NDj5A$K4^$^$l$k(B
! 645: @code{root} $B$r:F5"E*$K<h$j=P$7$FJB$Y$?%j%9%H(B. @var{a} $B$,(B @var{b} $B$N(B
! 646: $BDj5A$K4^$^$l$F$$$k>l9g(B, @var{a} $B$O(B @var{b} $B$h$j8e(B ($B1&(B) $B$KJB$P$J$1$l$P(B
! 647: $B$J$i$J$$(B.
! 648: @end itemize
! 649:
! 650: @example
! 651: [76] X=x^6+3*x^5+6*x^4+x^3-3*x^2+12*x+16$
! 652: [77] Y=x^6+6*x^5+24*x^4+8*x^3-48*x^2+384*x+1024$
! 653: [78] A=newalg(X);
! 654: (#0)
! 655: [79] gcda(X,subst(Y,x,x+A),[A]);
! 656: x+(-#0)
! 657: @end example
! 658:
! 659: @table @t
! 660: @item $B;2>H(B
! 661: @fref{gr hgr gr_mod}, @fref{asq af}
! 662: @end table
! 663:
! 664: @node sp_norm,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
! 665: @subsection @code{sp_norm}
! 666: @findex sp_norm
! 667:
! 668: @table @t
! 669: @item sp_norm(@var{alg},@var{var},@var{poly},@var{alglist})
! 670: :: $BBe?tBN>e$G$N%N%k%`$N7W;;(B
! 671: @end table
! 672:
! 673: @table @var
! 674: @item return
! 675: $BB?9`<0(B
! 676: @item var
! 677: @var{poly} $B$N<gJQ?t(B
! 678: @item poly
! 679: 1 $BJQ?tB?9`<0(B
! 680: @item alg
! 681: @code{root}
! 682: @item alglist
! 683: @code{root} $B$N%j%9%H(B
! 684: @end table
! 685:
! 686: @itemize @bullet
! 687: @item
! 688: @samp{sp} $B$GDj5A$5$l$F$$$k(B.
! 689: @item
! 690: @var{poly} $B$N(B, @var{alg} $B$K4X$9$k%N%k%`$r$H$k(B. $B$9$J$o$A(B,
! 691: @b{K} = @b{Q}(@var{alglist} \ @{@var{alg}@}) $B$H$9$k$H$-(B,
! 692: @var{poly} $B$K8=$l$k(B @var{alg} $B$r(B, @var{alg} $B$N(B @b{K} $B>e$N6&Lr$KCV$-49$($?$b$N(B
! 693: $BA4$F$N@Q$rJV$9(B.
! 694: @item
! 695: $B7k2L$O(B @b{K} $B>e$NB?9`<0$H$J$k(B.
! 696: @item
! 697: $B<B:]$K$OF~NO$K$h$j>l9g$o$1$,9T$o$l(B, $B=*7k<0$ND>@\7W;;$dCf9q>jM>DjM}$K(B
! 698: $B$h$j7W;;$5$l$k$,(B, $B:GE,$JA*Br$,9T$o$l$F$$$k$H$O8B$i$J$$(B.
! 699: $BBg0hJQ?t(B @code{USE_RES} $B$r(B 1 $B$K@_Dj$9$k$3$H$K$h$j(B, $B>o$K=*7k<0$K$h$j7W;;(B
! 700: $B$5$;$k$3$H$,$G$-$k(B.
! 701: @end itemize
! 702:
! 703: @example
! 704: [0] load("sp")$
! 705: [39] A0=newalg(x^2+1)$
! 706: [40] A1=newalg(x^2+A0)$
! 707: [41] sp_norm(A1,x,x^3+A0*x+A1,[A1,A0]);
! 708: x^6+(2*#0)*x^4+(#0^2)*x^2+(#0)
! 709: [42] sp_norm(A0,x,@@@@,[A0]);
! 710: x^12+2*x^8+5*x^4+1
! 711: @end example
! 712:
! 713: @table @t
! 714: @item $B;2>H(B
! 715: @fref{res}, @fref{asq af}
! 716: @end table
! 717:
! 718: @node asq af,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
! 719: @subsection @code{asq}, @code{af}
! 720: @findex asq
! 721: @findex af
! 722:
! 723: @table @t
! 724: @item asq(@var{poly})
! 725: :: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$NL5J?J}J,2r(B
! 726: @item af(@var{poly},@var{alglist})
! 727: :: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$N0x?tJ,2r(B
! 728: @end table
! 729:
! 730: @table @var
! 731: @item return
! 732: $B%j%9%H(B
! 733: @item poly
! 734: $BB?9`<0(B
! 735: @item alglist
! 736: @code{root} $B$N%j%9%H(B
! 737: @end table
! 738:
! 739: @itemize @bullet
! 740: @item
! 741: $B$$$:$l$b(B @samp{sp} $B$GDj5A$5$l$F$$$k(B.
! 742: @item
! 743: @code{root} $B$r4^$^$J$$>l9g$O@0?t>e$NH!?t$,8F$S=P$5$l9bB.$G$"$k$,(B,
! 744: @code{root} $B$r4^$`>l9g$K$O(B, @code{gcda()} $B$,5/F0$5$l$k$?$a$7$P$7$P(B
! 745: $B;~4V$,$+$+$k(B.
! 746: @item
! 747: @code{af()} $B$O(B, $B4pACBN$N;XDj(B, $B$9$J$o$ABh(B 2 $B0z?t$N(B, @code{root} $B$N%j%9%H(B
! 748: $B$N;XDj$,I,MW$G$"$k(B.
! 749: @item
! 750: @code{alglist} $B$G;XDj$5$l$k(B @code{root} $B$O(B, $B8e$GDj5A$5$l$?$b$N$[$IA0$N(B
! 751: $BJ}$KMh$J$1$l$P$J$i$J$$(B.
! 752: @item
! 753: $B7k2L$O(B, $BDL>o$NL5J?J}J,2r(B, $B0x?tJ,2r$HF1MM(B [@b{$B0x;R(B}, @b{$B=EJ#EY(B}] $B$N%j%9%H$G$"$k(B.
! 754: @item
! 755: $B=EJ#EY$r9~$a$?0x;R$NA4$F$N@Q$O(B, @var{poly} $B$HDj?tG\$N0c$$$,$"$jF@$k(B.
! 756: @end itemize
! 757:
! 758: @example
! 759: [99] asq(-x^4+6*x^3+(2*alg(0)-9)*x^2+(-6*alg(0))*x-2);
! 760: [[-x^2+3*x+(#0),2]]
! 761: [100] af(-x^2+3*x+alg(0),[alg(0)]);
! 762: [[x+(#0-1),1],[-x+(#0+2),1]]
! 763: @end example
! 764:
! 765: @table @t
! 766: @item $B;2>H(B
! 767: @fref{gcda}, @fref{fctr sqfr}
! 768: @end table
! 769:
! 770: @node sp,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
! 771: @subsection @code{sp}
! 772: @findex sp
! 773:
! 774: @table @t
! 775: @item sp(@var{poly})
! 776: :: $B:G>.J,2rBN$r5a$a$k(B.
! 777: @end table
! 778:
! 779: @table @var
! 780: @item return
! 781: $B%j%9%H(B
! 782: @item poly
! 783: $BB?9`<0(B
! 784: @end table
! 785:
! 786: @itemize @bullet
! 787: @item
! 788: @samp{sp} $B$GDj5A$5$l$F$$$k(B.
! 789: @item
! 790: $BM-M}?t78?t$N(B 1 $BJQ?tB?9`<0(B @var{poly} $B$N:G>.J,2rBN(B, $B$*$h$S$=$NBN>e$G$N(B
! 791: @var{poly} $B$N(B 1 $B<!0x;R$X$NJ,2r$r5a$a$k(B.
! 792: @item
! 793: $B7k2L$O(B, @var{poly} $B$N0x;R$N%j%9%H$H(B, $B:G>.J,2rBN$N(B, $BC`<!3HBg$K$h$kI=8=(B
! 794: $B$+$i$J$k%j%9%H$G$"$k(B.
! 795: @item
! 796: $B:G>.J,2rBN$O(B, @code{[root,algptorat(defpoly(root))]} $B$N%j%9%H$H$7$F(B
! 797: $BI=8=$5$l$F$$$k(B. $B$9$J$o$A(B, $B5a$a$k:G>.J,2rBN$O(B, $BM-M}?tBN$K(B, $B$3$N(B @code{root}
! 798: $B$rA4$FE:2C$7$?BN$H$7$FF@$i$l$k(B. $BE:2C$O(B, $B1&$NJ}$N(B @code{root} $B$+$i=g$K(B
! 799: $B9T$o$l$k(B.
! 800: @item
! 801: @code{sp()} $B$O(B, $BFbIt$G%N%k%`$N7W;;$N$?$a$K(B @code{sp_norm()} $B$r$7$P$7$P(B
! 802: $B5/F0$9$k(B. $B%N%k%`$N7W;;$O(B, $B>u67$K1~$8$F$5$^$6$^$JJ}K!$G9T$o$l$k$,(B,
! 803: $B$=$3$GMQ$$$i$l$kJ}K!$,:GA1$H$O8B$i$:(B, $BC1=c$J=*7k<0$N7W;;$NJ}$,9bB.(B
! 804: $B$G$"$k>l9g$b$"$k(B.
! 805: $BBg0hJQ?t(B @code{USE_RES} $B$r(B 1 $B$K@_Dj$9$k$3$H$K$h$j(B, $B>o$K=*7k<0$K$h$j7W;;(B
! 806: $B$5$;$k$3$H$,$G$-$k(B.
! 807: @end itemize
! 808:
! 809: @example
! 810: [101] L=sp(x^9-54);
! 811: [[x+(-#2),-54*x+(#1^6*#2^4),54*x+(#1^6*#2^4+54*#2),54*x+(-#1^8*#2^2),
! 812: -54*x+(#1^5*#2^5),54*x+(#1^5*#2^5+#1^8*#2^2),-54*x+(-#1^7*#2^3-54*#1),
! 813: 54*x+(-#1^7*#2^3),x+(-#1)],[[(#2),t#2^6+t#1^3*t#2^3+t#1^6],[(#1),t#1^9-54]]]
! 814: [102] for(I=0,M=1;I<9;I++)M*=L[0][I];
! 815: [111] M=simpalg(M);
! 816: -1338925209984*x^9+72301961339136
! 817: [112] ptozp(M);
! 818: -x^9+54
! 819: @end example
! 820:
! 821: @table @t
! 822: @item $B;2>H(B
! 823: @fref{asq af}, @fref{defpoly}, @fref{algptorat}, @fref{sp_norm}.
! 824: @end table
! 825:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>