Annotation of OpenXM/src/asir-doc/parts/algnum.texi, Revision 1.4
1.4 ! noro 1: @comment $OpenXM: OpenXM/src/asir-doc/parts/algnum.texi,v 1.3 2000/03/10 07:18:40 noro Exp $
1.2 noro 2: \BJP
1.1 noro 3: @node $BBe?tE*?t$K4X$9$k1i;;(B,,, Top
4: @chapter $BBe?tE*?t$K4X$9$k1i;;(B
1.2 noro 5: \E
6: \BEG
7: @node Algebraic numbers,,, Top
8: @chapter Algebraic numbers
9: \E
1.1 noro 10:
11: @menu
1.2 noro 12: \BJP
1.1 noro 13: * $BBe?tE*?t$NI=8=(B::
14: * $BBe?tE*?t$N1i;;(B::
15: * $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B::
16: * $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B::
1.2 noro 17: \E
18: \BEG
19: * Representation of algebraic numbers::
20: * Operations over algebraic numbers::
21: * Operations for uni-variate polynomials over an algebraic number field::
22: * Summary of functions for algebraic numbers::
23: \E
1.1 noro 24: @end menu
25:
1.2 noro 26: \BJP
1.1 noro 27: @node $BBe?tE*?t$NI=8=(B,,, $BBe?tE*?t$K4X$9$k1i;;(B
28: @section $BBe?tE*?t$NI=8=(B
1.2 noro 29: \E
30: \BEG
31: @node Representation of algebraic numbers,,, Algebraic numbers
32: @section Representation of algebraic numbers
33: \E
1.1 noro 34:
35: @noindent
1.2 noro 36: \BJP
1.1 noro 37: @b{Asir} $B$K$*$$$F$O(B, $BBe?tBN$H$$$&BP>]$ODj5A$5$l$J$$(B.
38: $BFHN)$7$?BP>]$H$7$FDj5A$5$l$k$N$O(B, $BBe?tE*?t$G$"$k(B.
39: $BBe?tBN$O(B, $BM-M}?tBN$K(B, $BBe?tE*?t$rM-8B8D(B
40: $B=g<!E:2C$7$?BN$H$7$F2>A[E*$KDj5A$5$l$k(B. $B?7$?$JBe?tE*?t$O(B, $BM-M}?t$*$h$S(B
41: $B$3$l$^$GDj5A$5$l$?Be?tE*?t$NB?9`<0$r78?t$H$9$k(B 1 $BJQ?tB?9`<0(B
42: $B$rDj5AB?9`<0$H$7$FDj5A$5$l$k(B. $B0J2<(B, $B$"$kDj5AB?9`<0$N:,$H$7$F(B
43: $BDj5A$5$l$?Be?tE*?t$r(B, @code{root} $B$H8F$V$3$H$K$9$k(B.
1.2 noro 44: \E
45: \BEG
46: In @b{Asir} algebraic number fields are not defined
47: as independent objects.
48: Instead, individual algebraic numbers are defined by some
49: means. In @b{Asir} an algebraic number field is
50: defined virtually as a number field obtained by adjoining a finite number
51: of algebraic numbers to the rational number field.
52:
53: A new algebraic number is introduced in @b{Asir} in such a way where
54: it is defined as a root of an uni-variate polynomial
55: whose coefficients include already defined algebraic numbers
56: as well as rational numbers.
57: We shall call such a newly defined algebraic number a @b{root}.
58: Also, we call such an uni-variate polynomial the defining polynomial
59: of that @b{root}.
60: \E
1.1 noro 61:
62: @example
63: [0] A0=newalg(x^2+1);
64: (#0)
65: [1] A1=newalg(x^3+A0*x+A0);
66: (#1)
67: [2] [type(A0),ntype(A0)];
68: [1,2]
69: @end example
70:
71: @noindent
1.2 noro 72: \BJP
1.1 noro 73: $B$3$NNc$G$O(B, @code{A0} $B$O(B @code{x^2+1=0} $B$N:,(B, @code{A1} $B$O(B, $B$=$N(B @code{A0}
74: $B$r78?t$K4^$`(B @code{x^3+A0*x+A0=0} $B$N:,$H$7$FDj5A$5$l$F$$$k(B.
1.2 noro 75: \E
76: \BEG
77: In this example, the algebraic number assigned to @code{A0} is defined
78: as a @b{root} of a polynomial @code{x^2+1};
79: that of @code{A1} is defined as a @b{root} of a polynomial
80: @code{x^3+A0*x+A0}, which you see contains the previously defined
81: @b{root} (@code{A0}) in its coefficients.
82: \E
1.1 noro 83:
84: @noindent
1.2 noro 85: \JP @code{newalg()} $B$N0z?t$9$J$o$ADj5AB?9`<0$K$O<!$N$h$&$J@)8B$,$"$k(B.
86: \BEG
87: The argument to @code{newalg()}, i.e., the defining polynomial,
88: must satisfy the following conditions.
89: \E
1.1 noro 90:
91: @enumerate
92: @item
1.2 noro 93: \JP $BDj5AB?9`<0$O(B 1 $BJQ?tB?9`<0$G$J$1$l$P$J$i$J$$(B.
94: \EG A defining polynomial must be an uni-variate polynomial.
1.1 noro 95:
96: @item
1.2 noro 97: \BJP
1.1 noro 98: @code{newalg()} $B$N0z?t$G$"$kDj5AB?9`<0$O(B, $BBe?tE*?t$r4^$`<0$N4JC12=$N$?(B
99: $B$a$KMQ$$$i$l$k(B. $B$3$N4JC12=$O(B, $BAH$_9~$_H!?t(B @code{srem()} $B$KAjEv$9$kFb(B
100: $BIt%k!<%A%s$rMQ$$$F9T$o$l$k(B. $B$3$N$?$a(B, $BDj5AB?9`<0$N<g78?t$O(B, $BM-M}?t$K(B
101: $B$J$C$F$$$kI,MW$,$"$k(B.
1.2 noro 102: \E
103: \BEG
104: A defining polynomial is used
105: to simplify expressions containing that algebraic number.
106: The procedure of such simplification is performed by an internal routine
107: similar to the built-in function @code{srem()}, where the defining
108: polynomial is used for the second argument, the divisor.
109: By this reason, the leading coefficient of the defining polynomial
110: must be a rational number (must not be an algebraic number.)
111: \E
1.1 noro 112:
113: @item
1.2 noro 114: \BJP
1.1 noro 115: $BDj5AB?9`<0$N78?t$O(B $B$9$G$KDj5A$5$l$F$$$k(B @code{root} $B$NM-M}?t78?tB?9`<0(B
116: $B$G$J$1$l$P$J$i$J$$(B.
1.2 noro 117: \E
118: \BEG
119: Every coefficients of a defining polynomial must be
120: a `(multi-variate) polynomial' in already defined @b{root}'s.
121: Here, `(multi-variate) polynomial' means a mathematical concept,
122: not the object type `polynomial' in @b{Asir}.
123: \E
1.1 noro 124: @item
1.2 noro 125: \BJP
1.1 noro 126: $BDj5AB?9`<0$O(B, $B$=$N78?t$K4^$^$l$kA4$F$N(B @code{root} $B$rM-M}?t$KE:2C$7$?(B
127: $BBN>e$G4{Ls$G$J$1$l$P$J$i$J$$(B.
1.2 noro 128: \E
129: \BEG
130: A defining polynomial must be irreducible over the field that is obtained
131: by adjoining all @b{root}'s contained in its coefficients
132: to the rational number field.
133: \E
1.1 noro 134: @end enumerate
135:
136: @noindent
1.2 noro 137: \BJP
1.1 noro 138: @code{newalg()} $B$,9T$&0z?t%A%'%C%/$O(B, 1 $B$*$h$S(B 2 $B$N$_$G$"$k(B.
139: $BFC$K(B, $B0z?t$NDj5AB?9`<0$N4{Ls@-$OA4$/%A%'%C%/$5$l$J$$(B. $B$3$l$O(B
140: $B4{Ls@-$N%A%'%C%/$,B?Bg$J7W;;NL$rI,MW$H$9$k$?$a$G(B, $B$3$NE@$K4X$7$F$O(B,
141: $B%f!<%6$N@UG$$KG$$5$l$F$$$k(B.
1.2 noro 142: \E
143: \BEG
144: Only the first two conditions (1 and 2) are checked
145: by function @code{newalg()}.
146: Among all, it should be emphasized that no check is done for the
147: irreducibility at all.
148: The reason is that the irreducibility test requires enormously much
149: computation time. You are trusted whether to check it at your own risk.
150: \E
1.1 noro 151:
152: @noindent
1.2 noro 153: \BJP
1.1 noro 154: $B0lC6(B @code{newalg()} $B$K$h$C$FDj5A$5$l$?Be?tE*?t$O(B, $B?t$H$7$F$N<1JL;R$r;}$A(B,
155: $B$^$?(B, $B?t$NCf$G$OBe?tE*?t$H$7$F$N<1JL;R$r;}$D(B. (@code{type()}, @code{vtype()}
156: $B;2>H(B.) $B$5$i$K(B, $BM-M}?t$H(B, @code{root} $B$NM-M}<0$bF1MM$KBe?tE*?t$H$J$k(B.
1.2 noro 157: \E
158: \BEG
159: Once a @b{root} has been defined by @code{newalg()} function,
160: it is given the type identifier for a number, and furthermore,
161: the sub-type identifier for an algebraic number.
162: (@xref{type}, @ref{ntype}.)
163: Also, any rational combination of rational numbers and @b{root}'s
164: is an algebraic number.
165: \E
1.1 noro 166:
167: @example
168: [87] N=(A0^2+A1)/(A1^2-A0-1);
169: ((#1+#0^2)/(#1^2-#0-1))
170: [88] [type(N),ntype(N)];
171: [1,2]
172: @end example
173:
174: @noindent
1.2 noro 175: \BJP
1.1 noro 176: $BNc$+$i$o$+$k$h$&$K(B, @code{root}$B$O(B @code{#@var{n}}
177: $B$HI=<($5$l$k(B. $B$7$+$7(B, $B%f!<%6$O$3$N7A$G$OF~NO$G$-$J$$(B. @code{root} $B$O(B
178: $BJQ?t$K3JG<$7$FMQ$$$k$+(B, $B$"$k$$$O(B @code{alg(@var{n})} $B$K$h$j<h$j=P$9(B.
179: $B$^$?(B, $B8zN($OMn$A$k$,(B, $BA4$/F1$80z?t(B ($BJQ?t$O0[$J$C$F$$$F$b$h$$(B) $B$K$h$j(B
180: @code{newalg()} $B$r8F$Y$P(B, $B?7$7$$Be?tE*?t$ODj5A$5$l$:$K4{$KDj5A$5$l$?(B
181: $B$b$N$,F@$i$l$k(B.
1.2 noro 182: \E
183: \BEG
184: As you see it in the example, a @b{root} is displayed as
185: @code{#@var{n}}. But, you cannot input that @b{root} in
186: its immediate output form.
187: You have to refer to a @b{root} by a program variable assigned
188: to the @b{root}, or to get it by @code{alg(@var{n})} function, or by
189: several other indirect means.
190: A strange use of @code{newalg()}, with a same argument polynomial
191: (except for the name of its main variable), will yield the old
192: @b{root} instead of a new @b{root} though it is apparently inefficient.
193: \E
1.1 noro 194:
195: @example
196: [90] alg(0);
197: (#0)
198: [91] newalg(t^2+1);
199: (#0)
200: @end example
201:
202: @noindent
1.2 noro 203: \JP @code{root} $B$NDj5AB?9`<0$O(B, @code{defpoly()} $B$K$h$j<h$j=P$;$k(B.
204: \BEG
205: The defining polynomial of a @b{root} can be obtained by
206: @code{defpoly()} function.
207: \E
1.1 noro 208:
209: @example
210: [96] defpoly(A0);
211: t#0^2+1
212: [97] defpoly(A1);
213: t#1^3+t#0*t#1+t#0
214: @end example
215:
216: @noindent
1.2 noro 217: \BJP
1.1 noro 218: $B$3$3$G8=$l$?(B, @code{t#0}, @code{t#1} $B$O$=$l$>$l(B @code{#0}, @code{#1} $B$K(B
219: $BBP1~$9$kITDj85$G$"$k(B. $B$3$l$i$b%f!<%6$,F~NO$9$k$3$H$O$G$-$J$$(B.
220: @code{var()} $B$G<h$j=P$9$+(B, $B$"$k$$$O(B @code{algv(@var{n})} $B$K$h$j<h$j=P$9(B.
1.2 noro 221: \E
222: \BEG
223: Here, you see a strange expression, @code{t#0} and @code{t#1}.
224: They are a specially indeterminates generated and maintained
225: by @b{Asir} internally. Indeterminate @code{t#0} corresponds to
226: @b{root} @code{#0}, and @code{t#0} to @code{#1}. These indeterminates
227: also cannot be input directly by a user in their immediate forms.
228: You can get them by several ways: by @code{var()} function,
229: or @code{algv(@var{n})} function.
230: \E
1.1 noro 231:
232: @example
233: [98] var(@@);
234: t#1
235: [99] algv(0);
236: t#0
237: [100]
238: @end example
239:
1.2 noro 240: \BJP
1.1 noro 241: @node $BBe?tE*?t$N1i;;(B,,, $BBe?tE*?t$K4X$9$k1i;;(B
242: @section $BBe?tE*?t$N1i;;(B
1.2 noro 243: \E
244: \BEG
245: @node Operations over algebraic numbers,,, Algebraic numbers
246: @section Operations over algebraic numbers
247: \E
1.1 noro 248:
249: @noindent
1.2 noro 250: \BJP
1.1 noro 251: $BA0@a$G(B, $BBe?tE*?t$NI=8=(B, $BDj5A$K$D$$$F=R$Y$?(B. $B$3$3$G$O(B, $BBe?tE*?t$rMQ$$$?(B
252: $B1i;;$K$D$$$F=R$Y$k(B. $BBe?tE*?t$K4X$7$F$O(B, $BAH$_9~$_H!?t$H$7$FDs6!$5$l$F$$$k(B
253: $B5!G=$O$4$/>/?t$G(B, $BBgItJ,$O%f!<%6Dj5AH!?t$K$h$j<B8=$5$l$F$$$k(B. $B%U%!%$%k(B
254: $B$O(B, @samp{sp} $B$G(B, @samp{gr} $B$HF1MM(B @b{Asir} $B$NI8=`%i%$%V%i%j%G%#%l%/%H%j(B
255: $B$K$*$+$l$F$$$k(B.
1.2 noro 256: \E
257: \BEG
258: In the previous section, we explained about the
259: representation of algebraic numbers and their defining method.
260: Here, we describe operations on algebraic numbers.
261: Only a few functions are built-in, and almost all functions are provided
262: as user defined functions. The file containing their definitions is
263: @samp{sp}, and it is placed under the same directory
264: as @samp{gr} is placed, i.e., the standard library directory of @b{Asir}.
265: \E
1.1 noro 266:
267: @example
268: [0] load("gr")$
269: [1] load("sp")$
270: @end example
271:
272: @noindent
1.2 noro 273: \JP $B$"$k$$$O(B, $B>o$KMQ$$$k$J$i$P(B, @samp{$HOME/.asirrc} $B$K=q$$$F$*$/$N$b$h$$(B.
274: \BEG
275: Or if you always need them, it is more convenient to include the
276: @code{load} commands in @samp{$HOME/.asirrc}.
277: \E
1.1 noro 278:
279: @noindent
1.2 noro 280: \BJP
1.1 noro 281: @code{root} $B$O(B $B$=$NB>$N?t$HF1MM(B, $B;MB'1i;;$,2DG=$H$J$k(B. $B$7$+$7(B, $BDj5AB?(B
282: $B9`<0$K$h$k4JC12=$O<+F0E*$K$O9T$o$l$J$$$N$G(B, $B%f!<%6$NH=CG$GE,599T$o(B
283: $B$J$1$l$P$J$i$J$$(B. $BFC$K(B, $BJ,Jl$,(B 0 $B$K$J$k>l9g$KCWL?E*$J%(%i!<$H$J$k$?$a(B,
284: $B<B:]$KJ,Jl$r;}$DBe?tE*?t$r@8@.$9$k>l9g$K$O:Y?4$NCm0U$,I,MW$H$J$k(B.
1.2 noro 285: \E
286: \BEG
287: Like the other numbers, algebraic numbers can get arithmetic operations
288: applied. Simplification, however, by defining polynomials are
289: not automatically performed. It is left to users to simplify their
290: expressions. A fatal error shall result if the denominator expression
291: will be simplified to 0. Therefore, be careful enough when you
292: will create and deal with algebraic numbers which may denominators
293: in their expressions.
294: \E
295:
296: \JP $BBe?tE*?t$N(B, $BDj5AB?9`<0$K$h$k4JC12=$O(B, @code{simpalg()} $B$G9T$&(B.
297: \BEG
298: Use @code{simpalg()} function for simplification of algebraic numbers
299: by defining polynomials.
300: \E
1.1 noro 301:
302: @example
303: [49] T=A0^2+1;
304: (#0^2+1)
305: [50] simpalg(T);
306: 0
307: @end example
308:
309: @noindent
1.2 noro 310: \JP @code{simpalg()} $B$OM-M}<0$N7A$r$7$?Be?tE*?t$r(B, $BB?9`<0$N7A$K4JC12=$9$k(B.
311: \BEG
312: Function @code{simpalg()} simplifies algebraic numbers which have
313: the same structures as rational expressions in their appearances.
314: \E
1.1 noro 315:
316: @example
317: [39] A0=newalg(x^2+1);
318: (#0)
319: [40] T=(A0^2+A0+1)/(A0+3);
320: ((#0^2+#0+1)/(#0+3))
321: [41] simpalg(T);
322: (3/10*#0+1/10)
323: [42] T=1/(A0^2+1);
324: ((1)/(#0^2+1))
325: [43] simpalg(T);
326: div : division by 0
327: stopped in invalgp at line 258 in file "/usr/local/lib/asir/sp"
328: 258 return 1/A;
329: (debug)
330: @end example
331:
332: @noindent
1.2 noro 333: \BJP
1.1 noro 334: $B$3$NNc$G$O(B, $BJ,Jl$,(B 0 $B$NBe?tE*?t$r4JC12=$7$h$&$H$7$F(B 0 $B$K$h$k=|;;$,@8$8(B
335: $B$?$?$a(B, $B%f!<%6Dj5AH!?t$G$"$k(B @code{simpalg()} $B$NCf$G%G%P%C%,$,8F$P$l$?(B
336: $B$3$H$r<($9(B. @code{simpalg()} $B$O(B, $BBe?tE*?t$r78?t$H$9$kB?9`<0$N(B
337: $B3F78?t$r4JC12=$G$-$k(B.
1.2 noro 338: \E
339: \BEG
340: This example shows an error caused by zero division in the course of
341: program execution of @code{simpalg()}, which attempted to simplify
342: an algebraic number expression of which the denominator is 0.
343:
344: Function @code{simpalg()} also can take a polynomial as its argument
345: and simplifies algebraic numbers in its coefficients.
346: \E
1.1 noro 347:
348: @example
349: [43] simpalg(1/A0*x+1/(A0+1));
350: (-#0)*x+(-1/2*#0+1/2)
351: @end example
352:
353: @noindent
1.2 noro 354: \BJP
1.1 noro 355: $BBe?tE*?t$r78?t$H$9$kB?9`<0$N4pK\1i;;$O(B, $BE,59(B @code{simpalg()} $B$r8F$V$3$H$r(B
356: $B=|$1$PDL>o$N>l9g$HF1MM$G$"$k$,(B, $B0x?tJ,2r$J$I$GIQHK$KMQ$$$i$l$k%N%k%`$N(B
357: $B7W;;$J$I$K$*$$$F$O(B, @code{root} $B$rITDj85$KCV$-49$($kI,MW$,=P$F$/$k(B.
358: $B$3$N>l9g(B, @code{algptorat()} $B$rMQ$$$k(B.
1.2 noro 359: \E
360: \BEG
361: Thus, you can operate in polynomials which contain algebraic numbers
362: as you do usually in ordinary polynomials,
363: except for proper simplification by @code{simpalg()}.
364: You may sometimes feel needs to convert @b{root}'s into indeterminates,
365: especially when you are working for norm computation in algorithms for
366: algebraic factorization.
367: Function @code{algptorat()} is used for such cases.
368: \E
1.1 noro 369:
370: @example
371: [83] A0=newalg(x^2+1);
372: (#0)
373: [84] A1=newalg(x^3+A0*x+A0);
374: (#1)
375: [85] T=(2*A0+A1*A0+A1^2)*x+(1+A1)/(2+A0);
376: (#1^2+#0*#1+2*#0)*x+((#1+1)/(#0+2))
377: [86] S=algptorat(T);
378: (((t#0+2)*t#1^2+(t#0^2+2*t#0)*t#1+2*t#0^2+4*t#0)*x+t#1+1)/(t#0+2)
379: [87] algptorat(coef(T,1));
380: t#1^2+t#0*t#1+2*t#0
381: @end example
382:
383: @noindent
1.2 noro 384: \BJP
1.1 noro 385: $B$3$N$h$&$K(B, @code{algptorat()} $B$O(B, $BB?9`<0(B, $B?t$K4^$^$l$k(B @code{root}
386: $B$r(B, $BBP1~$9$kITDj85(B, $B$9$J$o$A(B @code{#@var{n}} $B$KBP$9$k(B @code{t#@var{n}}
387: $B$KCV$-49$($k(B. $B4{$K=R$Y$?$h$&$K(B, $B$3$NITDj85$O%f!<%6$,F~NO$9$k$3$H$O$G$-$J$$(B.
388: $B$3$l$O(B, $B%f!<%6$NF~NO$7$?ITDj85$H(B, @code{root} $B$KBP1~$9$kITDj85$,0lCW(B
389: $B$7$J$$$h$&$K$9$k$?$a$G$"$k(B.
1.2 noro 390: \E
391: \BEG
392: As you see by the example,
393: function @code{algptorat()} converts @b{root}'s, @code{#@var{n}},
394: in polynomials and numbers into its associated indeterminates,
395: @code{t#@var{n}}. As was already mentioned those indeterminates cannot
396: be directly input in their immediate form.
397: The restriction is adopted to avoid the confusion that might happen
398: if the user could input such internally generatable indeterminates.
399: \E
1.1 noro 400:
401: @noindent
1.2 noro 402: \BJP
1.1 noro 403: $B5U$K(B, @code{root} $B$KBP1~$9$kITDj85$r(B, $BBP1~$9$k(B @code{root} $B$KCV$-49$($k(B
404: $B$?$a$K$O(B @code{rattoalgp()} $B$rMQ$$$k(B.
1.2 noro 405: \E
406: \BEG
407: The associated indeterminate to a @b{root} is reversely converted
408: into the @b{root} by @code{rattoalgp()} function.
409: \E
1.1 noro 410:
411: @example
412: [88] rattoalgp(S,[alg(0)]);
413: (((#0+2)/(#0+2))*t#1^2+((#0^2+2*#0)/(#0+2))*t#1+((2*#0^2+4*#0)/(#0+2)))*x
414: +((1)/(#0+2))*t#1+((1)/(#0+2))
415: [89] rattoalgp(S,[alg(0),alg(1)]);
416: (((#0^3+6*#0^2+12*#0+8)*#1^2+(#0^4+6*#0^3+12*#0^2+8*#0)*#1+2*#0^4+12*#0^3
417: +24*#0^2+16*#0)/(#0^3+6*#0^2+12*#0+8))*x+(((#0+2)*#1+#0+2)/(#0^2+4*#0+4))
418: [90] rattoalgp(S,[alg(1),alg(0)]);
419: (((#0+2)*#1^2+(#0^2+2*#0)*#1+2*#0^2+4*#0)/(#0+2))*x+((#1+1)/(#0+2))
420: [91] simpalg(@@89);
421: (#1^2+#0*#1+2*#0)*x+((-1/5*#0+2/5)*#1-1/5*#0+2/5)
422: [92] simpalg(@@90);
423: (#1^2+#0*#1+2*#0)*x+((-1/5*#0+2/5)*#1-1/5*#0+2/5)
424: @end example
425:
426: @noindent
1.2 noro 427: \BJP
1.1 noro 428: @code{rattoalgp()} $B$O(B, $BCV49$NBP>]$H$J$k(B @code{root} $B$N%j%9%H$rBh(B 2 $B0z?t(B
429: $B$K$H$j(B, $B:8$+$i=g$K(B, $BBP1~$9$kITDj85$rCV$-49$($F9T$/(B. $B$3$NNc$O(B,
430: $BCV49$9$k=g=x$r49$($k$H4JC12=$r9T$o$J$$$3$H$K$h$j7k2L$,0l8+0[$J$k$,(B,
431: $B4JC12=$K$h$j<B$O0lCW$9$k$3$H$r<($7$F$$$k(B. @code{algptorat()},
432: @code{rattoalgp()} $B$O(B, $B%f!<%6$,FH<+$N4JC12=$r9T$$$?$$>l9g$J$I$K$b(B
433: $BMQ$$$k$3$H$,$G$-$k(B.
1.2 noro 434: \E
435: \BEG
436: Function @code{rattoalgp()} takes as the second argument
437: a list consisting of @b{root}'s that you want to convert,
438: and converts them successively from the left.
439: This example shows that apparent difference of the results due to
440: the order of such conversion will vanish by simplification yielding
441: the same result.
442: Functions @code{algptorat()} and @code{rattoalgp()} can be conveniently
443: used for your own simplification.
444: \E
1.1 noro 445:
1.2 noro 446: \BJP
1.1 noro 447: @node $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B,,, $BBe?tE*?t$K4X$9$k1i;;(B
448: @section $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B
1.2 noro 449: \E
450: \BEG
451: @node Operations for uni-variate polynomials over an algebraic number field,,, Algebraic numbers
452: @section Operations for uni-variate polynomials over an algebraic number field
453: \E
1.1 noro 454:
455: @noindent
1.2 noro 456: \BJP
1.1 noro 457: @samp{sp} $B$G$O(B, 1 $BJQ?tB?9`<0$K8B$j(B, GCD, $B0x?tJ,2r$*$h$S$=$l$i$N1~MQ$H$7$F(B
458: $B:G>.J,2rBN$r5a$a$kH!?t$rDs6!$7$F$$$k(B.
1.2 noro 459: \E
460: \BEG
461: In the file @samp{sp} are provided functions for uni-variate polynomial
462: factorization and uni-variate polynomial GCD computation
463: over algebraic numbers,
464: and furthermore, as an application of them,
465: functions to compute splitting fields of univariate polynomials.
466: \E
1.1 noro 467:
468: @menu
469: * GCD::
1.2 noro 470: \BJP
1.1 noro 471: * $BL5J?J}J,2r(B $B0x?tJ,2r(B::
472: * $B:G>.J,2rBN(B::
1.2 noro 473: \E
474: \BEG
475: * Square-free factorization and Factorization::
476: * Splitting fields::
477: \E
1.1 noro 478: @end menu
479:
1.2 noro 480: \JP @node GCD,,, $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B
481: \EG @node GCD,,, Operations for uni-variate polynomials over an algebraic number field
1.1 noro 482: @subsection GCD
483:
484: @noindent
1.2 noro 485: \BJP
486: $BBe?tBN>e$G$N(B GCD $B$O(B @code{cr_gcda()} $B$K$h$j7W;;$5$l$k(B.
1.1 noro 487: $B$3$NH!?t$O%b%8%e%i1i;;$*$h$SCf9q>jM>DjM}$K$h$jBe?tBN>e$N(B GCD $B$r(B
488: $B7W;;$9$k$b$N$G(B, $BC`<!3HBg$KBP$7$F$bM-8z$G$"$k(B.
1.2 noro 489: \E
490: \BEG
491: Greatest common divisors (GCD) over algebraic number fields are computed
492: by @code{cr_gcda()} function. This function computes GCD by using modular
493: computation and Chinese remainder theorem and it works for the case
494: where the ground field is a multiple extension.
495: \E
1.1 noro 496:
497: @example
498: [63] A=newalg(t^9-15*t^6-87*t^3-125);
499: (#0)
500: [64] B=newalg(75*s^2+(10*A^7-175*A^4-470*A)*s+3*A^8-45*A^5-261*A^2);
501: (#1)
502: [65] P1=75*x^2+(150*B+10*A^7-175*A^4-395*A)*x+(75*B^2+(10*A^7-175*A^4-395*A)*B
503: +13*A^8-220*A^5-581*A^2)$
504: [66] P2=x^2+A*x+A^2$
1.3 noro 505: [67] cr_gcda(P1,P2);
1.1 noro 506: 27*x+((#0^6-19*#0^3-65)*#1-#0^7+19*#0^4+38*#0)
507: @end example
508:
1.2 noro 509: \BJP
1.1 noro 510: @node $BL5J?J}J,2r(B $B0x?tJ,2r(B,,, $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B
511: @subsection $BL5J?J}J,2r(B, $B0x?tJ,2r(B
1.2 noro 512: \E
513: \BEG
514: @node Square-free factorization and Factorization,,, Operations for uni-variate polynomials over an algebraic number field
515: @subsection Square-free factorization and Factorization
516: \E
1.1 noro 517:
518: @noindent
1.2 noro 519: \BJP
1.1 noro 520: $BL5J?J}J,2r$O(B, $BB?9`<0$H$=$NHyJ,$H$N(B GCD $B$N7W;;$+$i;O$^$k$b$C$H$b0lHLE*$J(B
521: $B%"%k%4%j%:%`$r:NMQ$7$F$$$k(B. $BH!?t$O(B @code{asq()} $B$G$"$k(B.
1.2 noro 522: \E
523: \BEG
524: For square-free factorization (of uni-variate polynomials over algebraic
525: number fields), we employ the most fundamental algorithm which begins
526: first to compute GCD of a polynomial and its derivative.
527: The function to do this factorization is @code{asq()}.
528: \E
1.1 noro 529:
530: @example
531: [116] A=newalg(x^2+x+1);
532: (#4)
533: [117] T=simpalg((x+A+1)*(x^2-2*A-3)^2*(x^3-x-A)^2);
534: x^11+(#4+1)*x^10+(-4*#4-8)*x^9+(-10*#4-4)*x^8+(16*#4+20)*x^7+(24*#4-6)*x^6
535: +(-29*#4-31)*x^5+(-15*#4+28)*x^4+(38*#4+29)*x^3+(#4-23)*x^2+(-21*#4-7)*x
536: +(3*#4+8)
537: [118] asq(T);
538: [[x^5+(-2*#4-4)*x^3+(-#4)*x^2+(2*#4+3)*x+(#4-2),2],[x+(#4+1),1]]
539: @end example
540:
541: @noindent
1.2 noro 542: \BJP
1.1 noro 543: $B7k2L$ODL>o$HF1MM$K(B, [@b{$B0x;R(B}, @b{$B=EJ#EY(B}] $B$N%j%9%H$H$J$k$,(B, $BA4$F$N0x;R(B
544: $B$N@Q$O(B, $B$b$H$NB?9`<0$HDj?tG\$N:9$O$"$jF@$k(B. $B$3$l$O(B, $B0x;R$r@0?t78?t$K$7(B
545: $B$F8+$d$9$/$9$k$?$a$G(B, $B0x?tJ,2r$G$bF1MM$G$"$k(B.
1.2 noro 546: \E
547: \BEG
548: Like factorization over the rational number field,
549: the result is presented,
550: commonly to both square-free factorization and factorization,
551: as a list whose elements are pairs (list of two elements) in the form
552: [@b{factor}, @b{multiplicity}]
553: without the constant multiple part.
554:
555: Here, it should be noticed that the products of all factors of the
556: result may DIFFER from the input polynomial by a constant.
557: The reason is that the factors are normalized so that they have
558: integral leading coefficients for the sake of readability.
559:
560: This incongruity may happen to square-free factorization and
561: factorization commonly.
562: \E
1.1 noro 563:
564: @noindent
1.2 noro 565: \BJP
1.1 noro 566: $BBe?tBN>e$G$N0x?tJ,2r$O(B, Trager $B$K$h$k%N%k%`K!$r2~NI$7$?$b$N$G(B, $BFC$K(B
567: $B$"$kB?9`<0$KBP$7(B, $B$=$N:,$rE:2C$7$?BN>e$G$=$NB?9`<0<+?H$r0x?tJ,2r$9$k(B
568: $B>l9g$KFC$KM-8z$G$"$k(B.
1.2 noro 569: \E
570: \BEG
571: The algorithm employed for factorization over algebraic number fields
572: is an improvement of the norm method by Trager.
573: It is especially very effective to factorize a polynomial over a field
574: obtained by adjoining some of its @b{root}'s to the base field.
575: \E
1.1 noro 576:
577: @example
578: [119] af(T,[A]);
579: [[x^3-x+(-#4),2],[x^2+(-2*#4-3),2],[x+(#4+1),1]]
580: @end example
581:
582: @noindent
1.2 noro 583: \BJP
1.1 noro 584: $B0z?t$O(B 2 $B$D$G(B, $BBh(B 2 $B0z?t$O(B, @code{root} $B$N%j%9%H$G$"$k(B. $B0x?tJ,2r$O(B
585: $BM-M}?tBN$K(B, $B$=$l$i$N(B @code{root} $B$rE:2C$7$?BN>e$G9T$o$l$k(B.
586: @code{root} $B$N=g=x$K$O@)8B$,$"$k(B. $B$9$J$o$A(B, $B8e$GDj5A$5$l$?$b$N$[$I(B
587: $BA0$NJ}$K$3$J$1$l$P(B
588: $B$J$i$J$$(B. $BJB$Y49$($O(B, $B<+F0E*$K$O9T$o$l$J$$(B. $B%f!<%6$N@UG$$H$J$k(B.
1.2 noro 589: \E
590: \BEG
591: The function takes two arguments: The second argument is a list of
592: @b{root}'s. Factorization is performed over a field obtained by
593: adjoining the @b{root}'s to the rational number field.
594: It is important to keep in mind that the ordering of the @b{root}'s
595: must obey a restriction: Last defined should come first.
596: The automatic re-ordering is not done.
597: It should be done by yourself.
598: \E
1.1 noro 599:
600: @noindent
1.2 noro 601: \BJP
1.1 noro 602: $B%N%k%`$rMQ$$$?0x?tJ,2r$K$*$$$F$O(B, $B%N%k%`$N7W;;$H@0?t78?t(B 1 $BJQ?tB?9`<0$N(B
603: $B0x?tJ,2r$N8zN($,(B, $BA4BN$N8zN($r:81&$9$k(B. $B$3$N$&$A(B, $BFC$K9b<!$NB?9`<0(B
604: $B$N>l9g$K8e<T$K$*$$$FAH9g$;GzH/$K$h$j7W;;ITG=$K$J$k>l9g$,$7$P$7$P@8$:$k(B.
1.2 noro 605: \E
606: \BEG
607: The efficiency of factorization via norm depends on the efficiency
608: of the norm computation and univariate factorization over the rationals.
609: Especially the latter often causes combinatorial explosion and the
610: computation will stick in such a case.
611: \E
1.1 noro 612:
613: @example
614: [120] B=newalg(x^2-2*A-3);
615: (#5)
616: [121] af(T,[B,A]);
617: [[x+(#5),2],[x^3-x+(-#4),2],[x+(-#5),2],[x+(#4+1),1]]
618: @end example
619:
1.2 noro 620: \BJP
1.1 noro 621: @node $B:G>.J,2rBN(B,,, $BBe?tBN>e$G$N(B 1 $BJQ?tB?9`<0$N1i;;(B
622: @subsection $B:G>.J,2rBN(B
1.2 noro 623: \E
624: \BEG
625: @node Splitting fields,,, Operations for uni-variate polynomials over an algebraic number field
626: @subsection Splitting fields
627: \E
1.1 noro 628:
629: @noindent
1.2 noro 630: \BJP
1.1 noro 631: $B$d$dFC<l$J1i;;$G$O$"$k$,(B, $BA0@a$N0x?tJ,2r$rH?I|E,MQ$9$k$3$H$K$h$j(B,
632: $BB?9`<0$N:G>.J,2rBN$r5a$a$k$3$H$,$G$-$k(B. $BH!?t$O(B @code{sp()} $B$G$"$k(B.
1.2 noro 633: \E
634: \BEG
635: This operation may be somewhat unusual and for specific interest.
636: (Galois Group for example.) Procedurally, however, it is easy to
637: obtain the splitting field of a polynomial by repeated application
638: of algebraic factorization described in the previous section.
639: The function is @code{sp()}.
640: \E
1.1 noro 641:
642: @example
643: [103] sp(x^5-2);
644: [[x+(-#1),2*x+(#0^3*#1^3+#0^4*#1^2+2*#1+2*#0),2*x+(-#0^4*#1^2),2*x
645: +(-#0^3*#1^3),x+(-#0)],[[(#1),t#1^4+t#0*t#1^3+t#0^2*t#1^2+t#0^3*t#1+t#0^4],
646: [(#0),t#0^5-2]]]
647: @end example
648:
649: @noindent
1.2 noro 650: \BJP
1.1 noro 651: @code{sp()} $B$O(B 1 $B0z?t$G(B, $B7k2L$O(B @code{[1 $B<!0x;R$N%j%9%H(B, [[root,
652: algptorat($BDj5AB?9`<0(B)] $B$N%j%9%H(B]} $B$J$k%j%9%H$G$"$k(B.
653: $BBh(B 2 $BMWAG$N(B @code{[root,algptorat($BDj5AB?9`<0(B)]} $B$N%j%9%H$O(B,
654: $B1&$+$i=g$K(B, $B:G>.J,2rBN$,F@$i$l$k$^$GE:2C$7$F$$$C$?(B @code{root} $B$r<($9(B.
655: $B$=$NDj5AB?9`<0$O(B, $B$=$ND>A0$^$G$N(B @code{root} $B$rE:2C$7$?BN>e$G4{Ls$G$"$k$3$H(B
656: $B$,J]>Z$5$l$F$$$k(B.
1.2 noro 657: \E
658: \BEG
659: Function @code{sp()} takes only one argument.
660: The result is a list of two element: The first element is
661: a list of linear factors, and the second one is a list whose elements
662: are pairs (list of two elements) in the form
663: @code{[@b{root}, algptorat(@b{defining polynomial})]}.
664: The second element, a list of pairs of form
665: @code{[@b{root},algptorat(@b{defining polynomial})]},
666: corresponds to the @b{root}'s which are adjoined to eventually obtain
667: the splitting field. They are listed in the reverse order of adjoining.
668: Each of the defining polynomials in the list is, of course,
669: guaranteed to be irreducible over the field obtained by adjoining all
670: @b{root}'s defined before it.
671: \E
1.1 noro 672:
673: @noindent
1.2 noro 674: \BJP
1.1 noro 675: $B7k2L$NBh(B 1 $BMWAG$G$"$k(B 1 $B<!0x;R$N%j%9%H$O(B, $BBh(B 2 $BMWAG$N(B @code{root} $B$rA4$F(B
676: $BE:2C$7$?BN>e$G$N(B, @code{sp()} $B$N0z?t$NB?9`<0$NA4$F$N0x;R$rI=$9(B. $B$=$NBN$O(B
677: $B:G>.J,2rBN$H$J$C$F$$$k$N$G(B, $B0x;R$OA4$F(B 1 $B<!$H$J$k$o$1$G$"$k(B. @code{af()}
678: $B$HF1MM(B, $BA4$F$N0x;R$N@Q$O(B, $B$b$H$NB?9`<0$HDj?tG\$N:9$O$"$jF@$k(B.
1.2 noro 679: \E
680: \BEG
681: The first element of the result, a list of linear factors, contains
682: all irreducible factors of the input polynomial over the field
683: obtained by adjoining all @b{root}'s in the second element of the result.
684: Because such field is the splitting field of the input polynomial,
685: factors in the result are all linear as the consequence.
686:
687: Similarly to function @code{af()}, the product of all resulting factors
688: may yield a polynomial which differs by a constant.
689: \E
1.1 noro 690:
1.2 noro 691: \BJP
1.1 noro 692: @node $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B,,, $BBe?tE*?t$K4X$9$k1i;;(B
693: @section $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
1.2 noro 694: \E
695: \BEG
696: @node Summary of functions for algebraic numbers,,, Algebraic numbers
697: @section Summary of functions for algebraic numbers
698: \E
1.1 noro 699: @menu
700: * newalg::
701: * defpoly::
702: * alg::
703: * algv::
704: * simpalg::
705: * algptorat::
706: * rattoalgp::
1.2 noro 707: * cr_gcda::
1.1 noro 708: * sp_norm::
1.4 ! noro 709: * asq af af_noalg::
! 710: * sp sp_noalg::
1.1 noro 711: @end menu
712:
1.2 noro 713: \JP @node newalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
714: \EG @node newalg,,, Summary of functions for algebraic numbers
1.1 noro 715: @subsection @code{newalg}
716: @findex newalg
717:
718: @table @t
719: @item newalg(@var{defpoly})
1.2 noro 720: \JP :: @code{root} $B$r@8@.$9$k(B.
721: \EG :: Creates a new @b{root}.
1.1 noro 722: @end table
723:
724: @table @var
725: @item return
1.2 noro 726: \JP $BBe?tE*?t(B (@code{root})
727: \EG algebraic number (@b{root})
1.1 noro 728: @item defpoly
1.2 noro 729: \JP $BB?9`<0(B
730: \EG polynomial
1.1 noro 731: @end table
732:
733: @itemize @bullet
734: @item
1.2 noro 735: \JP @var{defpoly} $B$rDj5AB?9`<0$H$9$kBe?tE*?t(B (@code{root}) $B$r@8@.$9$k(B.
736: \BEG
737: Creates a new @b{root} (algebraic number) with its defining
738: polynomial @var{defpoly}.
739: \E
740: @item
741: \JP @var{defpoly} $B$KBP$9$k@)8B$K4X$7$F$O(B, @xref{$BBe?tE*?t$NI=8=(B}.
742: \BEG
743: For constraints on @var{defpoly},
744: @xref{Representation of algebraic numbers}.
745: \E
1.1 noro 746: @end itemize
747:
748: @example
749: [0] A0=newalg(x^2-2);
750: (#0)
751: @end example
752:
753: @table @t
1.2 noro 754: \JP @item $B;2>H(B
755: \EG @item Reference
1.1 noro 756: @fref{defpoly}
757: @end table
758:
1.2 noro 759: \JP @node defpoly,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
760: \EG @node defpoly,,, Summary of functions for algebraic numbers
1.1 noro 761: @subsection @code{defpoly}
762: @findex defpoly
763:
764: @table @t
765: @item defpoly(@var{alg})
1.2 noro 766: \JP :: @code{root} $B$NDj5AB?9`<0$rJV$9(B.
767: \EG :: Returns the defining polynomial of @b{root} @var{alg}.
1.1 noro 768: @end table
769:
770: @table @var
771: @item return
1.2 noro 772: \JP $BB?9`<0(B
773: \EG polynomial
1.1 noro 774: @item alg
1.2 noro 775: \JP $BBe?tE*?t(B (@code{root})
776: \EG algebraic number (@code{root})
1.1 noro 777: @end table
778:
779: @itemize @bullet
780: @item
1.2 noro 781: \JP @code{root} @var{alg} $B$NDj5AB?9`<0$rJV$9(B.
782: \EG Returns the defining polynomial of @b{root} @var{alg}.
1.1 noro 783: @item
1.2 noro 784: \BJP
1.1 noro 785: @code{root} $B$r(B @code{#@var{n}} $B$H$9$l$P(B, $BDj5AB?9`<0$N<gJQ?t$O(B
786: @code{t#@var{n}} $B$H$J$k(B.
1.2 noro 787: \E
788: \BEG
789: If the argument @var{alg}, a @b{root}, is @code{#@var{n}},
790: then the main variable of its defining polynomial is
791: @code{t#@var{n}}.
792: \E
1.1 noro 793: @end itemize
794:
795: @example
796: [1] defpoly(A0);
797: t#0^2-2
798: @end example
799:
800: @table @t
1.2 noro 801: \JP @item $B;2>H(B
802: \EG @item Reference
1.1 noro 803: @fref{newalg}, @fref{alg}, @fref{algv}
804: @end table
805:
1.2 noro 806: \JP @node alg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
807: \EG @node alg,,, Summary of functions for algebraic numbers
1.1 noro 808: @subsection @code{alg}
809: @findex alg
810:
811: @table @t
812: @item alg(@var{i})
1.2 noro 813: \JP :: $B%$%s%G%C%/%9$KBP1~$9$k(B @code{root} $B$rJV$9(B.
814: \EG :: Returns a @b{root} which correspond to the index @var{i}.
1.1 noro 815: @end table
816:
817: @table @var
818: @item return
1.2 noro 819: \JP $BBe?tE*?t(B (@code{root})
820: \EG algebraic number (@code{root})
1.1 noro 821: @item i
1.2 noro 822: \JP $B@0?t(B
823: \EG integer
1.1 noro 824: @end table
825:
826: @itemize @bullet
827: @item
1.2 noro 828: \JP @code{root} @code{#@var{i}} $B$rJV$9(B.
829: \EG Returns @code{#@var{i}}, a @b{root}.
1.1 noro 830: @item
1.2 noro 831: \BJP
1.1 noro 832: @code{#@var{i}} $B$O%f!<%6$,D>@\F~NO$G$-$J$$$?$a(B, @code{alg(@var{i})} $B$H(B
833: $B$$$&7A$GF~NO$9$k(B.
1.2 noro 834: \E
835: \BEG
836: Because @code{#@var{i}} cannot be input directly,
837: this function provides an alternative way: input @code{alg(@var{i})}.
838: \E
1.1 noro 839: @end itemize
840:
841: @example
842: [2] x+#0;
843: syntax error
844: 0
845: [3] alg(0);
846: (#0)
847: @end example
848:
849: @table @t
1.2 noro 850: \JP @item $B;2>H(B
851: \EG @item Reference
1.1 noro 852: @fref{newalg}, @fref{algv}
853: @end table
854:
1.2 noro 855: \JP @node algv,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
856: \EG @node algv,,, Summary of functions for algebraic numbers
1.1 noro 857: @subsection @code{algv}
858: @findex algv
859:
860: @table @t
861: @item algv(@var{i})
1.2 noro 862: \JP :: @code{alg(@var{i})} $B$KBP1~$9$kITDj85$rJV$9(B.
863: \EG :: Returns the associated indeterminate with @code{alg(@var{i})}.
1.1 noro 864: @end table
865:
866: @table @var
867: @item return
1.2 noro 868: \JP $BB?9`<0(B
869: \EG polynomial
1.1 noro 870: @item i
1.2 noro 871: \JP $B@0?t(B
872: \EG integer
1.1 noro 873: @end table
874:
875: @itemize @bullet
876: @item
1.2 noro 877: \JP $BB?9`<0(B @code{t#@var{i}} $B$rJV$9(B.
878: \EG Returns an indeterminate @code{t#@var{i}}
1.1 noro 879: @item
1.2 noro 880: \BJP
1.1 noro 881: @code{t#@var{i}} $B$O%f!<%6$,D>@\F~NO$G$-$J$$$?$a(B, @code{algv(@var{i})} $B$H(B
882: $B$$$&7A$GF~NO$9$k(B.
1.2 noro 883: \E
884: \BEG
885: Since indeterminate @code{t#@var{i}} cannot be input directly,
886: it is input by @code{algv(@var{i})}.
887: \E
1.1 noro 888: @end itemize
889:
890: @example
891: [4] var(defpoly(A0));
892: t#0
893: [5] t#0;
894: syntax error
895: 0
896: [6] algv(0);
897: t#0
898: @end example
899:
900: @table @t
1.2 noro 901: \JP @item $B;2>H(B
902: \EG @item Reference
1.1 noro 903: @fref{newalg}, @fref{defpoly}, @fref{alg}
904: @end table
905:
1.2 noro 906: \JP @node simpalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
907: \EG @node simpalg,,, Summary of functions for algebraic numbers
1.1 noro 908: @subsection @code{simpalg}
909: @findex simpalg
910:
911: @table @t
912: @item simpalg(@var{rat})
1.2 noro 913: \JP :: $BM-M}<0$K4^$^$l$kBe?tE*?t$r4JC12=$9$k(B.
914: \EG :: Simplifies algebraic numbers in a rational expression.
1.1 noro 915: @end table
916:
917: @table @var
918: @item return
1.2 noro 919: \JP $BM-M}<0(B
920: \EG rational expression
1.1 noro 921: @item rat
1.2 noro 922: \JP $BM-M}<0(B
923: \EG rational expression
1.1 noro 924: @end table
925:
926: @itemize @bullet
927: @item
1.2 noro 928: \JP @samp{sp} $B$GDj5A$5$l$F$$$k(B.
929: \EG Defined in the file @samp{sp}.
1.1 noro 930: @item
1.2 noro 931: \BJP
1.1 noro 932: $B?t(B, $BB?9`<0(B, $BM-M}<0$K4^$^$l$kBe?tE*?t$r(B, $B4^$^$l$k(B @code{root} $B$NDj5A(B
933: $BB?9`<0$K$h$j4JC12=$9$k(B.
1.2 noro 934: \E
935: \BEG
936: Simplifies algebraic numbers contained in numbers,
937: polynomials, and rational expressions by the defining
938: polynomials of @b{root}'s contained in them.
939: \E
940: @item
941: \JP $B?t$N>l9g(B, $BJ,Jl$,$"$l$PM-M}2=$5$l(B, $B7k2L$O(B @code{root} $B$NB?9`<0$H$J$k(B.
942: \BEG
943: If the argument is a number having the denominator, it is
944: rationalized and the result is a polynomial in @b{root}'s.
945: \E
946: @item
947: \JP $BB?9`<0$N>l9g(B, $B3F78?t$,4JC12=$5$l$k(B.
948: \EG If the argument is a polynomial, each coefficient is simplified.
949: @item
950: \JP $BM-M}<0$N>l9g(B, $BJ,JlJ,;R$,B?9`<0$H$7$F4JC12=$5$l$k(B.
951: \BEG
952: If the argument is a rational expression, its denominator and
953: numerator are simplified as a polynomial.
954: \E
1.1 noro 955: @end itemize
956:
957: @example
958: [7] simpalg((1+A0)/(1-A0));
959: simpalg undefined
960: return to toplevel
961: [7] load("sp")$
962: [46] simpalg((1+A0)/(1-A0));
963: (-2*#0-3)
964: [47] simpalg((2-A0)/(2+A0)*x^2-1/(3+A0));
965: (-2*#0+3)*x^2+(1/7*#0-3/7)
966: [48] simpalg((x+1/(A0-1))/(x-1/(A0+1)));
967: (x+(#0+1))/(x+(-#0+1))
968: @end example
969:
1.2 noro 970: \JP @node algptorat,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
971: \EG @node algptorat,,, Summary of functions for algebraic numbers
1.1 noro 972: @subsection @code{algptorat}
973: @findex algptorat
974:
975: @table @t
976: @item algptorat(@var{poly})
1.2 noro 977: \JP :: $BB?9`<0$K4^$^$l$k(B @code{root} $B$r(B, $BBP1~$9$kITDj85$KCV$-49$($k(B.
978: \EG :: Substitutes the associated indeterminate for every @b{root}
1.1 noro 979: @end table
980:
981: @table @var
982: @item return
1.2 noro 983: \JP $BB?9`<0(B
984: \EG polynomial
1.1 noro 985: @item poly
1.2 noro 986: \JP $BB?9`<0(B
987: \EG polynomial
1.1 noro 988: @end table
989:
990: @itemize @bullet
991: @item
1.2 noro 992: \JP @samp{sp} $B$GDj5A$5$l$F$$$k(B.
993: \EG Defined in the file @samp{sp}.
1.1 noro 994: @item
1.2 noro 995: \BJP
1.1 noro 996: $BB?9`<0$K4^$^$l$k(B @code{root} @code{#@var{n}} $B$rA4$F(B @code{t#@var{n}} $B$K(B
997: $BCV$-49$($k(B.
1.2 noro 998: \E
999: \BEG
1000: Substitutes the associated indeterminate @code{t#@var{n}}
1001: for every @b{root} @code{#@var{n}} in a polynomial.
1002: \E
1.1 noro 1003: @end itemize
1004:
1005: @example
1006: [49] algptorat((-2*alg(0)+3)*x^2+(1/7*alg(0)-3/7));
1007: (-2*t#0+3)*x^2+1/7*t#0-3/7
1008: @end example
1009:
1010: @table @t
1.2 noro 1011: \JP @item $B;2>H(B
1012: \EG @item Reference
1.1 noro 1013: @fref{defpoly}, @fref{algv}
1014: @end table
1015:
1.2 noro 1016: \JP @node rattoalgp,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
1017: \EG @node rattoalgp,,, Summary of functions for algebraic numbers
1.1 noro 1018: @subsection @code{rattoalgp}
1019: @findex rattoalgp
1020:
1021: @table @t
1022: @item rattoalgp(@var{poly},@var{alglist})
1.2 noro 1023: \BJP
1.1 noro 1024: :: $BB?9`<0$K4^$^$l$k(B @code{root} $B$KBP1~$9$kITDj85$r(B @code{root} $B$K(B
1025: $BCV$-49$($k(B.
1.2 noro 1026: \E
1027: \BEG
1028: :: Substitutes a @b{root} for the associated indeterminate with the
1029: @b{root}.
1030: \E
1.1 noro 1031: @end table
1032:
1033: @table @var
1034: @item return
1.2 noro 1035: \JP $BB?9`<0(B
1036: \EG polynomial
1.1 noro 1037: @item poly
1.2 noro 1038: \JP $BB?9`<0(B
1039: \EG polynomial
1.1 noro 1040: @item alglist
1.2 noro 1041: \JP $B%j%9%H(B
1042: \EG list
1.1 noro 1043: @end table
1044:
1045: @itemize @bullet
1046: @item
1.2 noro 1047: \JP @samp{sp} $B$GDj5A$5$l$F$$$k(B.
1048: \EG Defined in the file @samp{sp}.
1.1 noro 1049: @item
1.2 noro 1050: \BJP
1.1 noro 1051: $BBh(B 2 $B0z?t$O(B @code{root} $B$N%j%9%H$G$"$k(B. @code{rattoalgp()} $B$O(B, $B$3$N(B @code{root}
1052: $B$KBP1~$9$kITDj85$r(B, $B$=$l$>$l(B @code{root} $B$KCV$-49$($k(B.
1.2 noro 1053: \E
1054: \BEG
1055: The second argument is a list of @b{root}'s. Function @code{rattoalgp()}
1056: substitutes a @b{root} for the associated indeterminate of the @b{root}.
1057: \E
1.1 noro 1058: @end itemize
1059:
1060: @example
1061: [51] rattoalgp((-2*algv(0)+3)*x^2+(1/7*algv(0)-3/7),[alg(0)]);
1062: (-2*#0+3)*x^2+(1/7*#0-3/7)
1063: @end example
1064:
1065: @table @t
1.2 noro 1066: \JP @item $B;2>H(B
1067: \EG @item Reference
1.1 noro 1068: @fref{alg}, @fref{algv}
1069: @end table
1070:
1.2 noro 1071: \JP @node cr_gcda,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
1072: \EG @node cr_gcda,,, Summary of functions for algebraic numbers
1073: @subsection @code{cr_gcda}
1074: @findex cr_gcda
1.1 noro 1075:
1076: @table @t
1.3 noro 1077: @item cr_gcda(@var{poly1},@var{poly2})
1.2 noro 1078: \JP :: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$N(B GCD
1079: \EG :: GCD of two uni-variate polynomials over an algebraic number field.
1.1 noro 1080: @end table
1081:
1082: @table @var
1083: @item return
1.2 noro 1084: \JP $BB?9`<0(B
1085: \EG polynomial
1.1 noro 1086: @item poly1, poly2
1.2 noro 1087: \JP $BB?9`<0(B
1088: \EG polynomial
1.1 noro 1089: @end table
1090:
1091: @itemize @bullet
1092: @item
1.2 noro 1093: \JP @samp{sp} $B$GDj5A$5$l$F$$$k(B.
1094: \EG Defined in the file @samp{sp}.
1.1 noro 1095: @item
1.2 noro 1096: \JP 2 $B$D$N(B 1 $BJQ?tB?9`<0$N(B GCD $B$r5a$a$k(B.
1097: \EG Finds the GCD of two uni-variate polynomials.
1.1 noro 1098: @end itemize
1099:
1100: @example
1101: [76] X=x^6+3*x^5+6*x^4+x^3-3*x^2+12*x+16$
1102: [77] Y=x^6+6*x^5+24*x^4+8*x^3-48*x^2+384*x+1024$
1103: [78] A=newalg(X);
1104: (#0)
1.3 noro 1105: [79] cr_gcda(X,subst(Y,x,x+A));
1.1 noro 1106: x+(-#0)
1107: @end example
1108:
1109: @table @t
1.2 noro 1110: \JP @item $B;2>H(B
1111: \EG @item Reference
1.4 ! noro 1112: @fref{gr hgr gr_mod}, @fref{asq af af_noalg}
1.1 noro 1113: @end table
1114:
1.2 noro 1115: \JP @node sp_norm,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
1116: \EG @node sp_norm,,, Summary of functions for algebraic numbers
1.1 noro 1117: @subsection @code{sp_norm}
1118: @findex sp_norm
1119:
1120: @table @t
1121: @item sp_norm(@var{alg},@var{var},@var{poly},@var{alglist})
1.2 noro 1122: \JP :: $BBe?tBN>e$G$N%N%k%`$N7W;;(B
1123: \EG :: Norm computation over an algebraic number field.
1.1 noro 1124: @end table
1125:
1126: @table @var
1127: @item return
1.2 noro 1128: \JP $BB?9`<0(B
1129: \EG polynomial
1.1 noro 1130: @item var
1.2 noro 1131: \JP @var{poly} $B$N<gJQ?t(B
1132: \EG The main variable of @var{poly}
1.1 noro 1133: @item poly
1.2 noro 1134: \JP 1 $BJQ?tB?9`<0(B
1135: \EG univariate polynomial
1.1 noro 1136: @item alg
1137: @code{root}
1138: @item alglist
1.2 noro 1139: \JP @code{root} $B$N%j%9%H(B
1140: \EG @code{root} list
1.1 noro 1141: @end table
1142:
1143: @itemize @bullet
1144: @item
1.2 noro 1145: \JP @samp{sp} $B$GDj5A$5$l$F$$$k(B.
1146: \EG Defined in the file @samp{sp}.
1.1 noro 1147: @item
1.2 noro 1148: \BJP
1.1 noro 1149: @var{poly} $B$N(B, @var{alg} $B$K4X$9$k%N%k%`$r$H$k(B. $B$9$J$o$A(B,
1150: @b{K} = @b{Q}(@var{alglist} \ @{@var{alg}@}) $B$H$9$k$H$-(B,
1151: @var{poly} $B$K8=$l$k(B @var{alg} $B$r(B, @var{alg} $B$N(B @b{K} $B>e$N6&Lr$KCV$-49$($?$b$N(B
1152: $BA4$F$N@Q$rJV$9(B.
1.2 noro 1153: \E
1154: \BEG
1155: Computes the norm of @var{poly} with respect to @var{alg}.
1156: Namely, if we write
1157: @b{K} = @b{Q}(@var{alglist} \ @{@var{alg}@}),
1158: The function returns a product of all conjugates of @var{poly},
1159: where the conjugate of polynomial @var{poly} is a polynomial
1160: in which the algebraic number @var{alg} is substituted
1161: for its conjugate over @b{K}.
1162: \E
1.1 noro 1163: @item
1.2 noro 1164: \JP $B7k2L$O(B @b{K} $B>e$NB?9`<0$H$J$k(B.
1165: \EG The result is a polynomial over @b{K}.
1.1 noro 1166: @item
1.2 noro 1167: \BJP
1.1 noro 1168: $B<B:]$K$OF~NO$K$h$j>l9g$o$1$,9T$o$l(B, $B=*7k<0$ND>@\7W;;$dCf9q>jM>DjM}$K(B
1169: $B$h$j7W;;$5$l$k$,(B, $B:GE,$JA*Br$,9T$o$l$F$$$k$H$O8B$i$J$$(B.
1170: $BBg0hJQ?t(B @code{USE_RES} $B$r(B 1 $B$K@_Dj$9$k$3$H$K$h$j(B, $B>o$K=*7k<0$K$h$j7W;;(B
1171: $B$5$;$k$3$H$,$G$-$k(B.
1.2 noro 1172: \E
1173: \BEG
1174: The method of computation depends on the input. Currently
1175: direct computation of resultant and Chinese remainder theorem
1176: are used but the selection is not necessarily optimal.
1177: By setting the global variable @code{USE_RES} to 1, the builtin function
1178: @code{res()} is always used.
1179: \E
1.1 noro 1180: @end itemize
1181:
1182: @example
1183: [0] load("sp")$
1184: [39] A0=newalg(x^2+1)$
1185: [40] A1=newalg(x^2+A0)$
1186: [41] sp_norm(A1,x,x^3+A0*x+A1,[A1,A0]);
1187: x^6+(2*#0)*x^4+(#0^2)*x^2+(#0)
1188: [42] sp_norm(A0,x,@@@@,[A0]);
1189: x^12+2*x^8+5*x^4+1
1190: @end example
1191:
1192: @table @t
1.2 noro 1193: \JP @item $B;2>H(B
1194: \EG @item Reference
1.4 ! noro 1195: @fref{res}, @fref{asq af af_noalg}
1.1 noro 1196: @end table
1197:
1.4 ! noro 1198: \JP @node asq af af_noalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
! 1199: \EG @node asq af af_noalg,,, Summary of functions for algebraic numbers
! 1200: @subsection @code{asq}, @code{af}, @code{af_noalg}
1.1 noro 1201: @findex asq
1202: @findex af
1.4 ! noro 1203: @findex af_noalg
1.1 noro 1204:
1205: @table @t
1206: @item asq(@var{poly})
1.2 noro 1207: \JP :: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$NL5J?J}J,2r(B
1208: \BEG
1209: :: Square-free factorization of polynomial @var{poly} over an
1210: algebraic number field.
1211: \E
1.1 noro 1212: @item af(@var{poly},@var{alglist})
1.4 ! noro 1213: @itemx af_noalg(@var{poly},@var{defpolylist})
1.2 noro 1214: \JP :: $BBe?tBN>e$N(B 1 $BJQ?tB?9`<0$N0x?tJ,2r(B
1215: \BEG
1216: :: Factorization of polynomial @var{poly} over an
1217: algebraic number field.
1218: \E
1.1 noro 1219: @end table
1220:
1221: @table @var
1222: @item return
1.2 noro 1223: \JP $B%j%9%H(B
1224: \EG list
1.1 noro 1225: @item poly
1.2 noro 1226: \JP $BB?9`<0(B
1227: \EG polynomial
1.1 noro 1228: @item alglist
1.2 noro 1229: \JP @code{root} $B$N%j%9%H(B
1230: \EG @code{root} list
1.4 ! noro 1231: @item defpolylist
! 1232: \JP @code{root} $B$rI=$9ITDj85$HDj5AB?9`<0$N%Z%"$N%j%9%H(B
! 1233: \EG @code{root} list of pairs of an indeterminate and a polynomial
1.1 noro 1234: @end table
1235:
1236: @itemize @bullet
1237: @item
1.2 noro 1238: \JP $B$$$:$l$b(B @samp{sp} $B$GDj5A$5$l$F$$$k(B.
1239: \EG Both defined in the file @samp{sp}.
1.1 noro 1240: @item
1.2 noro 1241: \BJP
1.1 noro 1242: @code{root} $B$r4^$^$J$$>l9g$O@0?t>e$NH!?t$,8F$S=P$5$l9bB.$G$"$k$,(B,
1.2 noro 1243: @code{root} $B$r4^$`>l9g$K$O(B, @code{cr_gcda()} $B$,5/F0$5$l$k$?$a$7$P$7$P(B
1.1 noro 1244: $B;~4V$,$+$+$k(B.
1.2 noro 1245: \E
1246: \BEG
1247: If the inputs contain no @b{root}'s, these functions run fast
1248: since they invoke functions over the integers.
1249: In contrast to this, if the inputs contain @b{root}'s, they sometimes
1250: take a long time, since @code{cr_gcda()} is invoked.
1251: \E
1.1 noro 1252: @item
1.2 noro 1253: \BJP
1.1 noro 1254: @code{af()} $B$O(B, $B4pACBN$N;XDj(B, $B$9$J$o$ABh(B 2 $B0z?t$N(B, @code{root} $B$N%j%9%H(B
1255: $B$N;XDj$,I,MW$G$"$k(B.
1.2 noro 1256: \E
1257: \BEG
1258: Function @code{af()} requires the specification of base field,
1259: i.e., list of @b{root}'s for its second argument.
1260: \E
1.1 noro 1261: @item
1.2 noro 1262: \BJP
1.1 noro 1263: @code{alglist} $B$G;XDj$5$l$k(B @code{root} $B$O(B, $B8e$GDj5A$5$l$?$b$N$[$IA0$N(B
1264: $BJ}$KMh$J$1$l$P$J$i$J$$(B.
1.2 noro 1265: \E
1266: \BEG
1267: In the second argument @code{alglist}, @b{root} defined last must come
1268: first.
1269: \E
1270: @item
1.4 ! noro 1271: \BJP
! 1272: @code{sp_noalg} $B$G$O(B, @var{poly} $B$K4^$^$l$kBe?tE*?t(B @var{ai} $B$rITDj85(B @var{vi}
! 1273: $B$GCV$-49$($k(B. @code{defpolylist} $B$O(B, @var{[[vn,dn(vn,...,v1)],...,[v1,d(v1)]]}
! 1274: $B$J$k%j%9%H$G$"$k(B. $B$3$3$G(B @var{di(vi,...,v1)} $B$O(B @var{ai} $B$NDj5AB?9`<0$K$*$$$F(B
! 1275: $BBe?tE*?t$rA4$F(B @var{vj} $B$KCV$-49$($?$b$N$G$"$k(B.
! 1276: \E
! 1277: \BEG
! 1278: To call @code{sp_noalg}, one should replace each algebraic number
! 1279: @var{ai} in @var{poly} with an indeterminate @var{vi}. @code{defpolylist}
! 1280: is a list @var{[[vn,dn(vn,...,v1)],...,[v1,d(v1)]]}. In this expression
! 1281: @var{di(vi,...,v1)} is a defining polynomial of @var{ai} represented
! 1282: as a multivariate polynomial.
! 1283: \E
! 1284: @item
! 1285: \BJP
! 1286: $B7k2L$O(B, $BDL>o$NL5J?J}J,2r(B, $B0x?tJ,2r$HF1MM(B [@b{$B0x;R(B}, @b{$B=EJ#EY(B}]
! 1287: $B$N%j%9%H$G$"$k(B. @code{af_noalg} $B$N>l9g(B, @b{$B0x;R(B} $B$K8=$l$kBe?tE*?t$O(B,
! 1288: @var{defpolylist} $B$K=>$C$FITDj85$KCV$-49$($i$l$k(B.
! 1289: \E
1.2 noro 1290: \BEG
1291: The result is a list, as a result of usual factorization, whose elements
1.4 ! noro 1292: is of the form [@b{factor}, @b{multiplicity}].
! 1293: In the result of @code{af_noalg}, algebraic numbers in @v{factor} are
! 1294: replaced by the indeterminates according to @var{defpolylist}.
1.2 noro 1295: \E
1296: @item
1297: \JP $B=EJ#EY$r9~$a$?0x;R$NA4$F$N@Q$O(B, @var{poly} $B$HDj?tG\$N0c$$$,$"$jF@$k(B.
1298: \BEG
1299: The product of all factors with multiplicities counted may differ from
1300: the input polynomial by a constant.
1301: \E
1.1 noro 1302: @end itemize
1303:
1304: @example
1305: [99] asq(-x^4+6*x^3+(2*alg(0)-9)*x^2+(-6*alg(0))*x-2);
1306: [[-x^2+3*x+(#0),2]]
1307: [100] af(-x^2+3*x+alg(0),[alg(0)]);
1308: [[x+(#0-1),1],[-x+(#0+2),1]]
1309: @end example
1310:
1311: @table @t
1.2 noro 1312: \JP @item $B;2>H(B
1313: \EG @item Reference
1314: @fref{cr_gcda}, @fref{fctr sqfr}
1.1 noro 1315: @end table
1316:
1.4 ! noro 1317: \JP @node sp sp_noalg,,, $BBe?tE*?t$K4X$9$kH!?t$N$^$H$a(B
! 1318: \EG @node sp sp_noalg,,, Summary of functions for algebraic numbers
! 1319: @subsection @code{sp}, @code{sp_noalg}
1.1 noro 1320: @findex sp
1321:
1322: @table @t
1323: @item sp(@var{poly})
1.4 ! noro 1324: @itemx sp_noalg(@var{poly})
1.2 noro 1325: \JP :: $B:G>.J,2rBN$r5a$a$k(B.
1326: \EG :: Finds the splitting field of polynomial @var{poly} and splits.
1.1 noro 1327: @end table
1328:
1329: @table @var
1330: @item return
1.2 noro 1331: \JP $B%j%9%H(B
1332: \EG list
1.1 noro 1333: @item poly
1.2 noro 1334: \JP $BB?9`<0(B
1335: \EG polynomial
1.1 noro 1336: @end table
1337:
1338: @itemize @bullet
1339: @item
1.2 noro 1340: \JP @samp{sp} $B$GDj5A$5$l$F$$$k(B.
1341: \EG Defined in the file @samp{sp}.
1.1 noro 1342: @item
1.2 noro 1343: \BJP
1.1 noro 1344: $BM-M}?t78?t$N(B 1 $BJQ?tB?9`<0(B @var{poly} $B$N:G>.J,2rBN(B, $B$*$h$S$=$NBN>e$G$N(B
1345: @var{poly} $B$N(B 1 $B<!0x;R$X$NJ,2r$r5a$a$k(B.
1.2 noro 1346: \E
1347: \BEG
1348: Finds the splitting field of @var{poly}, an uni-variate polynomial
1349: over with rational coefficients, and splits it into its linear factors
1350: over the field.
1351: \E
1.1 noro 1352: @item
1.2 noro 1353: \BJP
1.1 noro 1354: $B7k2L$O(B, @var{poly} $B$N0x;R$N%j%9%H$H(B, $B:G>.J,2rBN$N(B, $BC`<!3HBg$K$h$kI=8=(B
1.4 ! noro 1355: $B$+$i$J$k%j%9%H$G$"$k(B. @code{sp_noalg} $B$G$O(B, $BA4$F$NBe?tE*?t$,(B, $BBP1~$9$k(B
! 1356: $BITDj85(B ($BB($A(B @code{#i} $B$KBP$9$k(B @code{t#i}) $B$KCV$-49$($i$l$k(B. $B$3$l$K(B
! 1357: $B$h$j(B, @code{sp_noalg} $B$N=PNO$O(B, $B@0?t78?tB?JQ?tB?9`<0$N%j%9%H$H$J$k(B.
1.2 noro 1358: \E
1359: \BEG
1360: The result consists of a two element list: The first element is
1361: the list of all linear factors of @var{poly}; the second element is
1362: a list which represents the successive extension of the field.
1.4 ! noro 1363: In the result of @code{sp_noalg} all the algebraic numbers are replaced
! 1364: by the special indeterminate associated with it, that is @code{t#i}
! 1365: for @code{#i}. By this operation the result of @code{sp_noalg}
! 1366: is a list containing only integral polynomials.
1.2 noro 1367: \E
1.1 noro 1368: @item
1.2 noro 1369: \BJP
1.1 noro 1370: $B:G>.J,2rBN$O(B, @code{[root,algptorat(defpoly(root))]} $B$N%j%9%H$H$7$F(B
1371: $BI=8=$5$l$F$$$k(B. $B$9$J$o$A(B, $B5a$a$k:G>.J,2rBN$O(B, $BM-M}?tBN$K(B, $B$3$N(B @code{root}
1372: $B$rA4$FE:2C$7$?BN$H$7$FF@$i$l$k(B. $BE:2C$O(B, $B1&$NJ}$N(B @code{root} $B$+$i=g$K(B
1373: $B9T$o$l$k(B.
1.2 noro 1374: \E
1375: \BEG
1376: The splitting field is represented as a list of pairs of form
1377: @code{[root,algptorat(defpoly(root))]}.
1378: In more detail, the list is interpreted as a representation
1379: of successive extension obtained by adjoining @b{root}'s
1380: to the rational number field. Adjoining is performed from the right
1381: @b{root} to the left.
1382: \E
1.1 noro 1383: @item
1.2 noro 1384: \BJP
1.1 noro 1385: @code{sp()} $B$O(B, $BFbIt$G%N%k%`$N7W;;$N$?$a$K(B @code{sp_norm()} $B$r$7$P$7$P(B
1386: $B5/F0$9$k(B. $B%N%k%`$N7W;;$O(B, $B>u67$K1~$8$F$5$^$6$^$JJ}K!$G9T$o$l$k$,(B,
1387: $B$=$3$GMQ$$$i$l$kJ}K!$,:GA1$H$O8B$i$:(B, $BC1=c$J=*7k<0$N7W;;$NJ}$,9bB.(B
1388: $B$G$"$k>l9g$b$"$k(B.
1389: $BBg0hJQ?t(B @code{USE_RES} $B$r(B 1 $B$K@_Dj$9$k$3$H$K$h$j(B, $B>o$K=*7k<0$K$h$j7W;;(B
1390: $B$5$;$k$3$H$,$G$-$k(B.
1.2 noro 1391: \E
1392: \BEG
1393: @code{sp()} invokes @code{sp_norm()} internally. Computation of norm
1394: is done by several methods according to the situation but the algorithm
1395: selection is not always optimal and a simple resultant computation is
1396: often superior to the other methods.
1397: By setting the global variable @code{USE_RES} to 1,
1398: the builtin function @code{res()} is always used.
1399: \E
1.1 noro 1400: @end itemize
1401:
1402: @example
1403: [101] L=sp(x^9-54);
1404: [[x+(-#2),-54*x+(#1^6*#2^4),54*x+(#1^6*#2^4+54*#2),54*x+(-#1^8*#2^2),
1405: -54*x+(#1^5*#2^5),54*x+(#1^5*#2^5+#1^8*#2^2),-54*x+(-#1^7*#2^3-54*#1),
1406: 54*x+(-#1^7*#2^3),x+(-#1)],[[(#2),t#2^6+t#1^3*t#2^3+t#1^6],[(#1),t#1^9-54]]]
1407: [102] for(I=0,M=1;I<9;I++)M*=L[0][I];
1408: [111] M=simpalg(M);
1409: -1338925209984*x^9+72301961339136
1410: [112] ptozp(M);
1411: -x^9+54
1412: @end example
1413:
1414: @table @t
1.2 noro 1415: \JP @item $B;2>H(B
1416: \EG @item Reference
1.4 ! noro 1417: @fref{asq af af_noalg}, @fref{defpoly}, @fref{algptorat}, @fref{sp_norm}.
1.1 noro 1418: @end table
1419:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>