version 1.10, 2002/09/10 01:40:01 |
version 1.13, 2003/04/24 08:13:24 |
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/appendix.texi,v 1.9 2002/09/03 01:50:57 noro Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/appendix.texi,v 1.12 2003/04/21 03:07:31 noro Exp $ |
\BJP |
\BJP |
@node $BIUO?(B,,, Top |
@node $BIUO?(B,,, Top |
@appendix $BIUO?(B |
@appendix $BIUO?(B |
|
|
\E |
\E |
\BEG |
\BEG |
<option>: |
<option>: |
Character sequence beginning with an alphabetical letter @samp{=} <expression> |
Character sequence beginning with an alphabetical letter @samp{=} <expr> |
\E |
\E |
@end example |
@end example |
|
|
Line 440 factorization @code{af()}. (@xref{asq af af_noalg}.) |
|
Line 440 factorization @code{af()}. (@xref{asq af af_noalg}.) |
|
x^9-15*x^6-87*x^3-125 |
x^9-15*x^6-87*x^3-125 |
0msec |
0msec |
[177] af(Alg[5],[newalg(Alg[5])]); |
[177] af(Alg[5],[newalg(Alg[5])]); |
[[1,1],[75*x^2+(10*#0^7-175*#0^4-470*#0)*x+(3*#0^8-45*#0^5-261*#0^2),1], |
[[1,1],[75*x^2+(10*#0^7-175*#0^4-470*#0)*x |
[75*x^2+(-10*#0^7+175*#0^4+395*#0)*x+(3*#0^8-45*#0^5-261*#0^2),1], |
+(3*#0^8-45*#0^5-261*#0^2),1], |
[25*x^2+(25*#0)*x+(#0^8-15*#0^5-87*#0^2),1],[x^2+(#0)*x+(#0^2),1], |
[75*x^2+(-10*#0^7+175*#0^4+395*#0)*x |
[x+(-#0),1]] |
+(3*#0^8-45*#0^5-261*#0^2),1], |
|
[25*x^2+(25*#0)*x+(#0^8-15*#0^5-87*#0^2),1], |
|
[x^2+(#0)*x+(#0^2),1],[x+(-#0),1]] |
3.600sec + gc : 1.040sec |
3.600sec + gc : 1.040sec |
@end example |
@end example |
@item ifplot |
@item ifplot |
Line 480 is defined. Its returns a rather complex result. |
|
Line 482 is defined. Its returns a rather complex result. |
|
[84] load("ratint")$ |
[84] load("ratint")$ |
[102] ratint(x^6/(x^5+x+1),x); |
[102] ratint(x^6/(x^5+x+1),x); |
[1/2*x^2, |
[1/2*x^2, |
[[(#2)*log(-140*x+(-2737*#2^2+552*#2-131)),161*t#2^3-23*t#2^2+15*t#2-1], |
[[(#2)*log(-140*x+(-2737*#2^2+552*#2-131)), |
|
161*t#2^3-23*t#2^2+15*t#2-1], |
[(#1)*log(-5*x+(-21*#1-4)),21*t#1^2+3*t#1+1]]] |
[(#1)*log(-5*x+(-21*#1-4)),21*t#1^2+3*t#1+1]]] |
@end example |
@end example |
\BJP |
\BJP |
Line 513 result and then summing them up all. |
|
Line 516 result and then summing them up all. |
|
\E |
\E |
@item primdec |
@item primdec |
\BJP |
\BJP |
$BB?9`<0%$%G%"%k$N=`AG%$%G%"%kJ,2r$H$=$N:,4p$NAG%$%G%"%kJ,2r(B |
$BM-M}?tBN>e$NB?9`<0%$%G%"%k$N=`AG%$%G%"%kJ,2r$H$=$N:,4p$NAG%$%G%"%kJ,2r(B |
(@pxref{primadec primedec}). |
(@pxref{primadec primedec}). |
\E |
\E |
\BEG |
\BEG |
Primary ideal decomposition of polynomial ideals and prime compotision |
Primary ideal decomposition of polynomial ideals and prime compotision |
of radicals (@pxref{primadec primedec}). |
of radicals over the rationals (@pxref{primadec primedec}). |
\E |
\E |
|
@item primdec_mod |
|
\BJP |
|
$BM-8BBN>e$NB?9`<0%$%G%"%k$N:,4p$NAG%$%G%"%kJ,2r(B |
|
(@pxref{primedec_mod}). |
|
\E |
|
\BEG |
|
Prime decomposition of radicals of polynomial ideals |
|
over finite fields (@pxref{primedec_mod}). |
|
\E |
|
@item bfct |
|
\BJP |
|
b $B4X?t$N7W;;(B. |
|
\E |
|
\BEG |
|
Computation of b-function. |
|
\E |
|
(@pxref{bfunction bfct generic_bfct}). |
@end table |
@end table |
|
|
\BJP |
\BJP |
Line 594 available for UNIX commands, including @samp{asir}. |
|
Line 614 available for UNIX commands, including @samp{asir}. |
|
[[1,1],[x-1,1],[x^4+x^3+x^2+x+1,1]] |
[[1,1],[x-1,1],[x^4+x^3+x^2+x+1,1]] |
[1] !! /* !!+Return */ |
[1] !! /* !!+Return */ |
\BJP |
\BJP |
fctr(x^5-1); /* $BD>A0$NF~NO$,8=$l$k$FJT=8$G$-$k(B */ |
fctr(x^5-1); /* $BD>A0$NF~NO$,8=$l$FJT=8$G$-$k(B */ |
... /* $BJT=8(B+Return */ |
... /* $BJT=8(B+Return */ |
\E |
\E |
\BEG |
\BEG |
fctr(x^5-1); /* The last input appears. */ |
fctr(x^5-1); /* The last input appears. */ |
Line 1197 Proc. ISSAC'92, 387-396. |
|
Line 1217 Proc. ISSAC'92, 387-396. |
|
Noro, M., Yokoyama, K., "A Modular Method to Compute the Rational Univariate |
Noro, M., Yokoyama, K., "A Modular Method to Compute the Rational Univariate |
Representation of Zero-Dimensional Ideals", |
Representation of Zero-Dimensional Ideals", |
J. Symb. Comp. 28/1 (1999), 243-263. |
J. Symb. Comp. 28/1 (1999), 243-263. |
|
@item [Saito,Sturmfels,Takayama] |
|
Saito, M., Sturmfels, B., Takayama, N., |
|
"Groebner deformations of hypergeometric differential equations", |
|
Algorithms and Computation in Mathematics 6, Springer-Verlag (2000). |
@item [Shimoyama,Yokoyama] |
@item [Shimoyama,Yokoyama] |
Shimoyama, T., Yokoyama, K., |
Shimoyama, T., Yokoyama, K., |
"Localization and primary decomposition of polynomial ideals", |
"Localization and primary decomposition of polynomial ideals", |
Line 1208 J. Symb. Comp. 20 (1995), 364-397. |
|
Line 1232 J. Symb. Comp. 20 (1995), 364-397. |
|
Traverso, C., "Groebner trace algorithms", Proc. ISSAC '88(LNCS 358), 125-138. |
Traverso, C., "Groebner trace algorithms", Proc. ISSAC '88(LNCS 358), 125-138. |
@item [Weber] |
@item [Weber] |
Weber, K., "The accelerated Integer GCD Algorithm", ACM TOMS, 21, 1(1995), 111-122. |
Weber, K., "The accelerated Integer GCD Algorithm", ACM TOMS, 21, 1(1995), 111-122. |
|
@item [Yokoyama] |
|
Yokoyama, K., "Prime decomposition of polynomial ideals over finite fields", |
|
Proc. ICMS, (2002), 217-227. |
@end table |
@end table |
|
|