Return to appendix.texi CVS log | Up to [local] / OpenXM / src / asir-doc / parts |
version 1.7, 2001/03/16 05:18:04 | version 1.10, 2002/09/10 01:40:01 | ||
---|---|---|---|
|
|
||
@comment $OpenXM: OpenXM/src/asir-doc/parts/appendix.texi,v 1.6 2000/03/17 08:27:28 noro Exp $ | @comment $OpenXM: OpenXM/src/asir-doc/parts/appendix.texi,v 1.9 2002/09/03 01:50:57 noro Exp $ | ||
\BJP | \BJP | ||
@node $BIUO?(B,,, Top | @node $BIUO?(B,,, Top | ||
@appendix $BIUO?(B | @appendix $BIUO?(B | ||
|
|
||
<list> | <list> | ||
\E | \E | ||
@end example | @end example | ||
\JP (@xref{$B$5$^$6$^$J<0(B}) | \JP (@xref{$B$5$^$6$^$J<0(B}.) | ||
\EG (@xref{various expressions}) | \EG (@xref{various expressions}.) | ||
@example | @example | ||
\BJP | \BJP | ||
|
|
||
(X,Y,Japan etc.) | (X,Y,Japan etc.) | ||
\E | \E | ||
@end example | @end example | ||
\JP (@xref{$BJQ?t$*$h$SITDj85(B}) | \JP (@xref{$BJQ?t$*$h$SITDj85(B}.) | ||
\EG (@xref{variables and indeterminates}) | \EG (@xref{variables and indeterminates}.) | ||
@example | @example | ||
\BJP | \BJP | ||
|
|
||
(a,bCD,c1_2 etc.) | (a,bCD,c1_2 etc.) | ||
\E | \E | ||
@end example | @end example | ||
\JP (@xref{$BJQ?t$*$h$SITDj85(B}) | \JP (@xref{$BJQ?t$*$h$SITDj85(B}.) | ||
\EG (@xref{variables and indeterminates}) | \EG (@xref{variables and indeterminates}.) | ||
@example | @example | ||
\BJP | \BJP | ||
|
|
||
<complex number> | <complex number> | ||
\E | \E | ||
@end example | @end example | ||
\JP (@xref{$B?t$N7?(B}) | \JP (@xref{$B?t$N7?(B}.) | ||
\EG (@xref{Types of numbers}) | \EG (@xref{Types of numbers}.) | ||
@example | @example | ||
\JP <$BM-M}?t(B>: | \JP <$BM-M}?t(B>: | ||
|
|
||
\EG <algebraic number>: | \EG <algebraic number>: | ||
newalg(x^2+1), alg(0)^2+1 | newalg(x^2+1), alg(0)^2+1 | ||
@end example | @end example | ||
\JP (@xref{$BBe?tE*?t$K4X$9$k1i;;(B}) | \JP (@xref{$BBe?tE*?t$K4X$9$k1i;;(B}.) | ||
\EG (@xref{Algebraic numbers}) | \EG (@xref{Algebraic numbers}.) | ||
@example | @example | ||
\JP <$BJ#AG?t(B>: | \JP <$BJ#AG?t(B>: | ||
|
|
||
@samp{<<} <expr list> @samp{>>} | @samp{<<} <expr list> @samp{>>} | ||
\E | \E | ||
@end example | @end example | ||
\JP (@xref{$B%0%l%V%J4pDl$N7W;;(B}) | \JP (@xref{$B%0%l%V%J4pDl$N7W;;(B}.) | ||
\EG (@xref{Groebner basis computation}) | \EG (@xref{Groebner basis computation}.) | ||
@example | @example | ||
\BJP | \BJP | ||
|
|
||
@samp{end(quit)} <terminator> | @samp{end(quit)} <terminator> | ||
\E | \E | ||
@end example | @end example | ||
\JP (@xref{$BJ8(B}) | \JP (@xref{$BJ8(B}.) | ||
\EG (@xref{statements}) | \EG (@xref{statements}.) | ||
@example | @example | ||
\JP <$B=*C<(B>: | \JP <$B=*C<(B>: | ||
|
|
||
@table @samp | @table @samp | ||
@item fff | @item fff | ||
\JP $BBgI8?tAGBN$*$h$SI8?t(B 2 $B$NM-8BBN>e$N0lJQ?tB?9`<00x?tJ,2r(B (@xref{$BM-8BBN$K4X$9$k1i;;(B}) | \JP $BBgI8?tAGBN$*$h$SI8?t(B 2 $B$NM-8BBN>e$N0lJQ?tB?9`<00x?tJ,2r(B (@xref{$BM-8BBN$K4X$9$k1i;;(B}.) | ||
\EG Univariate factorizer over large finite fields (@xref{Finite fields}) | \EG Univariate factorizer over large finite fields (@xref{Finite fields}.) | ||
@item gr | @item gr | ||
\JP $B%0%l%V%J4pDl7W;;%Q%C%1!<%8(B. (@xref{$B%0%l%V%J4pDl$N7W;;(B}) | \JP $B%0%l%V%J4pDl7W;;%Q%C%1!<%8(B. (@xref{$B%0%l%V%J4pDl$N7W;;(B}.) | ||
\EG Groebner basis package. (@xref{Groebner basis computation}) | \EG Groebner basis package. (@xref{Groebner basis computation}.) | ||
@item sp | @item sp | ||
\JP $BBe?tE*?t$N1i;;$*$h$S0x?tJ,2r(B, $B:G>.J,2rBN(B. (@xref{$BBe?tE*?t$K4X$9$k1i;;(B}) | \JP $BBe?tE*?t$N1i;;$*$h$S0x?tJ,2r(B, $B:G>.J,2rBN(B. (@xref{$BBe?tE*?t$K4X$9$k1i;;(B}.) | ||
\EG Operations over algebraic numbers and factorization, Splitting fields. (@xref{Algebraic numbers}) | \EG Operations over algebraic numbers and factorization, Splitting fields. (@xref{Algebraic numbers}.) | ||
@item alpi | @item alpi | ||
@itemx bgk | @itemx bgk | ||
@itemx cyclic | @itemx cyclic | ||
|
|
||
@itemx kimura | @itemx kimura | ||
\JP $B%0%l%V%J4pDl7W;;$K$*$$$F(B, $B%Y%s%A%^!<%/$=$NB>$GMQ$$$i$l$kNc(B. | \JP $B%0%l%V%J4pDl7W;;$K$*$$$F(B, $B%Y%s%A%^!<%/$=$NB>$GMQ$$$i$l$kNc(B. | ||
\EG Example polynomial sets for benchmarks of Groebner basis computation. | \EG Example polynomial sets for benchmarks of Groebner basis computation. | ||
(@xref{katsura hkatsura cyclic hcyclic}) | (@xref{katsura hkatsura cyclic hcyclic}.) | ||
@item defs.h | @item defs.h | ||
\JP $B$$$/$D$+$N%^%/%mDj5A(B. (@xref{$B%W%j%W%m%;%C%5(B}) | \JP $B$$$/$D$+$N%^%/%mDj5A(B. (@xref{$B%W%j%W%m%;%C%5(B}.) | ||
\EG Macro definitions. (@xref{preprocessor}) | \EG Macro definitions. (@xref{preprocessor}.) | ||
@item fctrtest | @item fctrtest | ||
\BJP | \BJP | ||
$B@0?t>e$NB?9`<0$N0x?tJ,2r$N%F%9%H(B. REDUCE $B$N(B @samp{factor.tst} $B$*$h$S(B | $B@0?t>e$NB?9`<0$N0x?tJ,2r$N%F%9%H(B. REDUCE $B$N(B @samp{factor.tst} $B$*$h$S(B | ||
|
|
||
@item fctrdata | @item fctrdata | ||
\BJP | \BJP | ||
@samp{fctrtest} $B$G;H$o$l$F$$$kNc$r4^$`(B, $B0x?tJ,2r%F%9%HMQ$NNc(B. | @samp{fctrtest} $B$G;H$o$l$F$$$kNc$r4^$`(B, $B0x?tJ,2r%F%9%HMQ$NNc(B. | ||
@code{Alg[]} $B$K<}$a$i$l$F$$$kNc$O(B, @code{af()} (@xref{asq af af_noalg}) $BMQ$NNc$G$"$k(B. | @code{Alg[]} $B$K<}$a$i$l$F$$$kNc$O(B, @code{af()} (@ref{asq af af_noalg}) $BMQ$NNc$G$"$k(B. | ||
\E | \E | ||
\BEG | \BEG | ||
This contains example polynomials for factorization. It includes | This contains example polynomials for factorization. It includes | ||
polynomials used in @samp{fctrtest}. | polynomials used in @samp{fctrtest}. | ||
Polynomials contained in vector @code{Alg[]} is for the algebraic | Polynomials contained in vector @code{Alg[]} is for the algebraic | ||
factorization @code{af()} (@xref{asq af af_noalg}). | factorization @code{af()}. (@xref{asq af af_noalg}.) | ||
\E | \E | ||
@example | @example | ||
[45] load("sp")$ | [45] load("sp")$ | ||
|
|
||
@end example | @end example | ||
@item ifplot | @item ifplot | ||
\BJP | \BJP | ||
$BIA2h(B (@xref{ifplot conplot plot plotover}) $B$N$?$a$NNc(B. @code{IS[]} $B$K$OM-L>$J(B | $BIA2h(B (@ref{ifplot conplot plot polarplot plotover}) $B$N$?$a$NNc(B. @code{IS[]} $B$K$OM-L>$J(B | ||
$B6J@~$NNc(B, $BJQ?t(B @code{H, D, C, S} $B$K$O%H%i%s%W$N%O!<%H(B, $B%@%$%d(B, $B%/%i%V(B, | $B6J@~$NNc(B, $BJQ?t(B @code{H, D, C, S} $B$K$O%H%i%s%W$N%O!<%H(B, $B%@%$%d(B, $B%/%i%V(B, | ||
$B%9%Z!<%I(B ($B$i$7$-(B) $B6J@~$NNc$,F~$C$F$$$k(B. | $B%9%Z!<%I(B ($B$i$7$-(B) $B6J@~$NNc$,F~$C$F$$$k(B. | ||
\E | \E | ||
\BEG | \BEG | ||
Examples for plotting (@xref{ifplot conplot plot plotover}). | Examples for plotting. (@xref{ifplot conplot plot polarplot plotover}.) | ||
Vector @code{IS[]} contains several famous algebraic curves. | Vector @code{IS[]} contains several famous algebraic curves. | ||
Variables @code{H, D, C, S} contains something like the suits | Variables @code{H, D, C, S} contains something like the suits | ||
(Heart, Diamond, Club, and Spade) of cards. | (Heart, Diamond, Club, and Spade) of cards. | ||
|
|
||
It is possible to link an @b{Asir} library to use the functionalities of | It is possible to link an @b{Asir} library to use the functionalities of | ||
@b{Asir} from other programs. | @b{Asir} from other programs. | ||
The necessary libraries are included in the @b{OpenXM} distribution | The necessary libraries are included in the @b{OpenXM} distribution | ||
@ifhtml | |||
(<A HREF="http://www.math.kobe-u.ac.jp/OpenXM">OpenXM </A>) | |||
@end ifhtml | |||
(@code{http://www.math.kobe-u.ac.jp/OpenXM}). | (@code{http://www.math.kobe-u.ac.jp/OpenXM}). | ||
At present only the @b{OpenXM} interfaces are available. Here we assume | At present only the @b{OpenXM} interfaces are available. Here we assume | ||
that @b{OpenXM} is already installed. In the following | that @b{OpenXM} is already installed. In the following |