version 1.8, 2002/08/13 07:44:06 |
version 1.14, 2003/04/28 03:09:23 |
|
|
@comment $OpenXM: OpenXM/src/asir-doc/parts/appendix.texi,v 1.7 2001/03/16 05:18:04 noro Exp $ |
@comment $OpenXM: OpenXM/src/asir-doc/parts/appendix.texi,v 1.13 2003/04/24 08:13:24 noro Exp $ |
\BJP |
\BJP |
@node $BIUO?(B,,, Top |
@node $BIUO?(B,,, Top |
@appendix $BIUO?(B |
@appendix $BIUO?(B |
|
|
<list> |
<list> |
\E |
\E |
@end example |
@end example |
\JP (@xref{$B$5$^$6$^$J<0(B}) |
\JP (@xref{$B$5$^$6$^$J<0(B}.) |
\EG (@xref{various expressions}) |
\EG (@xref{various expressions}.) |
|
|
@example |
@example |
\BJP |
\BJP |
|
|
\E |
\E |
\BEG |
\BEG |
<option>: |
<option>: |
Character sequence beginning with an alphabetical letter @samp{=} <expression> |
Character sequence beginning with an alphabetical letter @samp{=} <expr> |
\E |
\E |
@end example |
@end example |
|
|
|
|
(X,Y,Japan etc.) |
(X,Y,Japan etc.) |
\E |
\E |
@end example |
@end example |
\JP (@xref{$BJQ?t$*$h$SITDj85(B}) |
\JP (@xref{$BJQ?t$*$h$SITDj85(B}.) |
\EG (@xref{variables and indeterminates}) |
\EG (@xref{variables and indeterminates}.) |
|
|
@example |
@example |
\BJP |
\BJP |
|
|
(a,bCD,c1_2 etc.) |
(a,bCD,c1_2 etc.) |
\E |
\E |
@end example |
@end example |
\JP (@xref{$BJQ?t$*$h$SITDj85(B}) |
\JP (@xref{$BJQ?t$*$h$SITDj85(B}.) |
\EG (@xref{variables and indeterminates}) |
\EG (@xref{variables and indeterminates}.) |
|
|
@example |
@example |
\BJP |
\BJP |
|
|
<complex number> |
<complex number> |
\E |
\E |
@end example |
@end example |
\JP (@xref{$B?t$N7?(B}) |
\JP (@xref{$B?t$N7?(B}.) |
\EG (@xref{Types of numbers}) |
\EG (@xref{Types of numbers}.) |
|
|
@example |
@example |
\JP <$BM-M}?t(B>: |
\JP <$BM-M}?t(B>: |
|
|
\EG <algebraic number>: |
\EG <algebraic number>: |
newalg(x^2+1), alg(0)^2+1 |
newalg(x^2+1), alg(0)^2+1 |
@end example |
@end example |
\JP (@xref{$BBe?tE*?t$K4X$9$k1i;;(B}) |
\JP (@xref{$BBe?tE*?t$K4X$9$k1i;;(B}.) |
\EG (@xref{Algebraic numbers}) |
\EG (@xref{Algebraic numbers}.) |
|
|
@example |
@example |
\JP <$BJ#AG?t(B>: |
\JP <$BJ#AG?t(B>: |
|
|
@samp{<<} <expr list> @samp{>>} |
@samp{<<} <expr list> @samp{>>} |
\E |
\E |
@end example |
@end example |
\JP (@xref{$B%0%l%V%J4pDl$N7W;;(B}) |
\JP (@xref{$B%0%l%V%J4pDl$N7W;;(B}.) |
\EG (@xref{Groebner basis computation}) |
\EG (@xref{Groebner basis computation}.) |
|
|
@example |
@example |
\BJP |
\BJP |
|
|
@samp{end(quit)} <terminator> |
@samp{end(quit)} <terminator> |
\E |
\E |
@end example |
@end example |
\JP (@xref{$BJ8(B}) |
\JP (@xref{$BJ8(B}.) |
\EG (@xref{statements}) |
\EG (@xref{statements}.) |
|
|
@example |
@example |
\JP <$B=*C<(B>: |
\JP <$B=*C<(B>: |
Line 386 Here, we explain some of them. |
|
Line 386 Here, we explain some of them. |
|
|
|
@table @samp |
@table @samp |
@item fff |
@item fff |
\JP $BBgI8?tAGBN$*$h$SI8?t(B 2 $B$NM-8BBN>e$N0lJQ?tB?9`<00x?tJ,2r(B (@xref{$BM-8BBN$K4X$9$k1i;;(B}) |
\JP $BBgI8?tAGBN$*$h$SI8?t(B 2 $B$NM-8BBN>e$N0lJQ?tB?9`<00x?tJ,2r(B (@xref{$BM-8BBN$K4X$9$k1i;;(B}.) |
\EG Univariate factorizer over large finite fields (@xref{Finite fields}) |
\EG Univariate factorizer over large finite fields (@xref{Finite fields}.) |
@item gr |
@item gr |
\JP $B%0%l%V%J4pDl7W;;%Q%C%1!<%8(B. (@xref{$B%0%l%V%J4pDl$N7W;;(B}) |
\JP $B%0%l%V%J4pDl7W;;%Q%C%1!<%8(B. (@xref{$B%0%l%V%J4pDl$N7W;;(B}.) |
\EG Groebner basis package. (@xref{Groebner basis computation}) |
\EG Groebner basis package. (@xref{Groebner basis computation}.) |
@item sp |
@item sp |
\JP $BBe?tE*?t$N1i;;$*$h$S0x?tJ,2r(B, $B:G>.J,2rBN(B. (@xref{$BBe?tE*?t$K4X$9$k1i;;(B}) |
\JP $BBe?tE*?t$N1i;;$*$h$S0x?tJ,2r(B, $B:G>.J,2rBN(B. (@xref{$BBe?tE*?t$K4X$9$k1i;;(B}.) |
\EG Operations over algebraic numbers and factorization, Splitting fields. (@xref{Algebraic numbers}) |
\EG Operations over algebraic numbers and factorization, Splitting fields. (@xref{Algebraic numbers}.) |
@item alpi |
@item alpi |
@itemx bgk |
@itemx bgk |
@itemx cyclic |
@itemx cyclic |
Line 401 Here, we explain some of them. |
|
Line 401 Here, we explain some of them. |
|
@itemx kimura |
@itemx kimura |
\JP $B%0%l%V%J4pDl7W;;$K$*$$$F(B, $B%Y%s%A%^!<%/$=$NB>$GMQ$$$i$l$kNc(B. |
\JP $B%0%l%V%J4pDl7W;;$K$*$$$F(B, $B%Y%s%A%^!<%/$=$NB>$GMQ$$$i$l$kNc(B. |
\EG Example polynomial sets for benchmarks of Groebner basis computation. |
\EG Example polynomial sets for benchmarks of Groebner basis computation. |
(@xref{katsura hkatsura cyclic hcyclic}) |
(@xref{katsura hkatsura cyclic hcyclic}.) |
@item defs.h |
@item defs.h |
\JP $B$$$/$D$+$N%^%/%mDj5A(B. (@xref{$B%W%j%W%m%;%C%5(B}) |
\JP $B$$$/$D$+$N%^%/%mDj5A(B. (@xref{$B%W%j%W%m%;%C%5(B}.) |
\EG Macro definitions. (@xref{preprocessor}) |
\EG Macro definitions. (@xref{preprocessor}.) |
@item fctrtest |
@item fctrtest |
\BJP |
\BJP |
$B@0?t>e$NB?9`<0$N0x?tJ,2r$N%F%9%H(B. REDUCE $B$N(B @samp{factor.tst} $B$*$h$S(B |
$B@0?t>e$NB?9`<0$N0x?tJ,2r$N%F%9%H(B. REDUCE $B$N(B @samp{factor.tst} $B$*$h$S(B |
|
|
@item fctrdata |
@item fctrdata |
\BJP |
\BJP |
@samp{fctrtest} $B$G;H$o$l$F$$$kNc$r4^$`(B, $B0x?tJ,2r%F%9%HMQ$NNc(B. |
@samp{fctrtest} $B$G;H$o$l$F$$$kNc$r4^$`(B, $B0x?tJ,2r%F%9%HMQ$NNc(B. |
@code{Alg[]} $B$K<}$a$i$l$F$$$kNc$O(B, @code{af()} (@xref{asq af af_noalg}) $BMQ$NNc$G$"$k(B. |
@code{Alg[]} $B$K<}$a$i$l$F$$$kNc$O(B, @code{af()} (@ref{asq af af_noalg}) $BMQ$NNc$G$"$k(B. |
\E |
\E |
\BEG |
\BEG |
This contains example polynomials for factorization. It includes |
This contains example polynomials for factorization. It includes |
polynomials used in @samp{fctrtest}. |
polynomials used in @samp{fctrtest}. |
Polynomials contained in vector @code{Alg[]} is for the algebraic |
Polynomials contained in vector @code{Alg[]} is for the algebraic |
factorization @code{af()} (@xref{asq af af_noalg}). |
factorization @code{af()}. (@xref{asq af af_noalg}.) |
\E |
\E |
@example |
@example |
[45] load("sp")$ |
[45] load("sp")$ |
Line 440 factorization @code{af()} (@xref{asq af af_noalg}). |
|
Line 440 factorization @code{af()} (@xref{asq af af_noalg}). |
|
x^9-15*x^6-87*x^3-125 |
x^9-15*x^6-87*x^3-125 |
0msec |
0msec |
[177] af(Alg[5],[newalg(Alg[5])]); |
[177] af(Alg[5],[newalg(Alg[5])]); |
[[1,1],[75*x^2+(10*#0^7-175*#0^4-470*#0)*x+(3*#0^8-45*#0^5-261*#0^2),1], |
[[1,1],[75*x^2+(10*#0^7-175*#0^4-470*#0)*x |
[75*x^2+(-10*#0^7+175*#0^4+395*#0)*x+(3*#0^8-45*#0^5-261*#0^2),1], |
+(3*#0^8-45*#0^5-261*#0^2),1], |
[25*x^2+(25*#0)*x+(#0^8-15*#0^5-87*#0^2),1],[x^2+(#0)*x+(#0^2),1], |
[75*x^2+(-10*#0^7+175*#0^4+395*#0)*x |
[x+(-#0),1]] |
+(3*#0^8-45*#0^5-261*#0^2),1], |
|
[25*x^2+(25*#0)*x+(#0^8-15*#0^5-87*#0^2),1], |
|
[x^2+(#0)*x+(#0^2),1],[x+(-#0),1]] |
3.600sec + gc : 1.040sec |
3.600sec + gc : 1.040sec |
@end example |
@end example |
@item ifplot |
@item ifplot |
\BJP |
\BJP |
$BIA2h(B (@xref{ifplot conplot plot plotover}) $B$N$?$a$NNc(B. @code{IS[]} $B$K$OM-L>$J(B |
$BIA2h(B (@ref{ifplot conplot plot polarplot plotover}) $B$N$?$a$NNc(B. @code{IS[]} $B$K$OM-L>$J(B |
$B6J@~$NNc(B, $BJQ?t(B @code{H, D, C, S} $B$K$O%H%i%s%W$N%O!<%H(B, $B%@%$%d(B, $B%/%i%V(B, |
$B6J@~$NNc(B, $BJQ?t(B @code{H, D, C, S} $B$K$O%H%i%s%W$N%O!<%H(B, $B%@%$%d(B, $B%/%i%V(B, |
$B%9%Z!<%I(B ($B$i$7$-(B) $B6J@~$NNc$,F~$C$F$$$k(B. |
$B%9%Z!<%I(B ($B$i$7$-(B) $B6J@~$NNc$,F~$C$F$$$k(B. |
\E |
\E |
\BEG |
\BEG |
Examples for plotting (@xref{ifplot conplot plot plotover}). |
Examples for plotting. (@xref{ifplot conplot plot polarplot plotover}.) |
Vector @code{IS[]} contains several famous algebraic curves. |
Vector @code{IS[]} contains several famous algebraic curves. |
Variables @code{H, D, C, S} contains something like the suits |
Variables @code{H, D, C, S} contains something like the suits |
(Heart, Diamond, Club, and Spade) of cards. |
(Heart, Diamond, Club, and Spade) of cards. |
Line 480 is defined. Its returns a rather complex result. |
|
Line 482 is defined. Its returns a rather complex result. |
|
[84] load("ratint")$ |
[84] load("ratint")$ |
[102] ratint(x^6/(x^5+x+1),x); |
[102] ratint(x^6/(x^5+x+1),x); |
[1/2*x^2, |
[1/2*x^2, |
[[(#2)*log(-140*x+(-2737*#2^2+552*#2-131)),161*t#2^3-23*t#2^2+15*t#2-1], |
[[(#2)*log(-140*x+(-2737*#2^2+552*#2-131)), |
|
161*t#2^3-23*t#2^2+15*t#2-1], |
[(#1)*log(-5*x+(-21*#1-4)),21*t#1^2+3*t#1+1]]] |
[(#1)*log(-5*x+(-21*#1-4)),21*t#1^2+3*t#1+1]]] |
@end example |
@end example |
\BJP |
\BJP |
Line 513 result and then summing them up all. |
|
Line 516 result and then summing them up all. |
|
\E |
\E |
@item primdec |
@item primdec |
\BJP |
\BJP |
$BB?9`<0%$%G%"%k$N=`AG%$%G%"%kJ,2r$H$=$N:,4p$NAG%$%G%"%kJ,2r(B |
$BM-M}?tBN>e$NB?9`<0%$%G%"%k$N=`AG%$%G%"%kJ,2r$H$=$N:,4p$NAG%$%G%"%kJ,2r(B |
(@pxref{primadec primedec}). |
(@pxref{primadec primedec}). |
\E |
\E |
\BEG |
\BEG |
Primary ideal decomposition of polynomial ideals and prime compotision |
Primary ideal decomposition of polynomial ideals and prime compotision |
of radicals (@pxref{primadec primedec}). |
of radicals over the rationals (@pxref{primadec primedec}). |
\E |
\E |
|
@item primdec_mod |
|
\BJP |
|
$BM-8BBN>e$NB?9`<0%$%G%"%k$N:,4p$NAG%$%G%"%kJ,2r(B |
|
(@pxref{primedec_mod}). |
|
\E |
|
\BEG |
|
Prime decomposition of radicals of polynomial ideals |
|
over finite fields (@pxref{primedec_mod}). |
|
\E |
|
@item bfct |
|
\BJP |
|
b $B4X?t$N7W;;(B. |
|
\E |
|
\BEG |
|
Computation of b-function. |
|
\E |
|
(@pxref{bfunction bfct generic_bfct ann ann0}). |
@end table |
@end table |
|
|
\BJP |
\BJP |
Line 594 available for UNIX commands, including @samp{asir}. |
|
Line 614 available for UNIX commands, including @samp{asir}. |
|
[[1,1],[x-1,1],[x^4+x^3+x^2+x+1,1]] |
[[1,1],[x-1,1],[x^4+x^3+x^2+x+1,1]] |
[1] !! /* !!+Return */ |
[1] !! /* !!+Return */ |
\BJP |
\BJP |
fctr(x^5-1); /* $BD>A0$NF~NO$,8=$l$k$FJT=8$G$-$k(B */ |
fctr(x^5-1); /* $BD>A0$NF~NO$,8=$l$FJT=8$G$-$k(B */ |
... /* $BJT=8(B+Return */ |
... /* $BJT=8(B+Return */ |
\E |
\E |
\BEG |
\BEG |
fctr(x^5-1); /* The last input appears. */ |
fctr(x^5-1); /* The last input appears. */ |
Line 1197 Proc. ISSAC'92, 387-396. |
|
Line 1217 Proc. ISSAC'92, 387-396. |
|
Noro, M., Yokoyama, K., "A Modular Method to Compute the Rational Univariate |
Noro, M., Yokoyama, K., "A Modular Method to Compute the Rational Univariate |
Representation of Zero-Dimensional Ideals", |
Representation of Zero-Dimensional Ideals", |
J. Symb. Comp. 28/1 (1999), 243-263. |
J. Symb. Comp. 28/1 (1999), 243-263. |
|
@item [Saito,Sturmfels,Takayama] |
|
Saito, M., Sturmfels, B., Takayama, N., |
|
"Groebner deformations of hypergeometric differential equations", |
|
Algorithms and Computation in Mathematics 6, Springer-Verlag (2000). |
@item [Shimoyama,Yokoyama] |
@item [Shimoyama,Yokoyama] |
Shimoyama, T., Yokoyama, K., |
Shimoyama, T., Yokoyama, K., |
"Localization and primary decomposition of polynomial ideals", |
"Localization and primary decomposition of polynomial ideals", |
Line 1208 J. Symb. Comp. 20 (1995), 364-397. |
|
Line 1232 J. Symb. Comp. 20 (1995), 364-397. |
|
Traverso, C., "Groebner trace algorithms", Proc. ISSAC '88(LNCS 358), 125-138. |
Traverso, C., "Groebner trace algorithms", Proc. ISSAC '88(LNCS 358), 125-138. |
@item [Weber] |
@item [Weber] |
Weber, K., "The accelerated Integer GCD Algorithm", ACM TOMS, 21, 1(1995), 111-122. |
Weber, K., "The accelerated Integer GCD Algorithm", ACM TOMS, 21, 1(1995), 111-122. |
|
@item [Yokoyama] |
|
Yokoyama, K., "Prime decomposition of polynomial ideals over finite fields", |
|
Proc. ICMS, (2002), 217-227. |
@end table |
@end table |
|
|