[BACK]Return to array.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts / builtin

Annotation of OpenXM/src/asir-doc/parts/builtin/array.texi, Revision 1.10

1.10    ! noro        1: @comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/array.texi,v 1.9 2003/12/18 10:26:20 ohara Exp $
1.2       noro        2: \BJP
1.1       noro        3: @node $BG[Ns(B,,, $BAH$_9~$_H!?t(B
                      4: @section $BG[Ns(B
1.2       noro        5: \E
                      6: \BEG
                      7: @node Arrays,,, Built-in Function
                      8: @section Arrays
                      9: \E
1.1       noro       10:
                     11: @menu
                     12: * newvect::
1.9       ohara      13: * ltov::
                     14: * vtol::
1.4       noro       15: * newbytearray::
1.1       noro       16: * newmat::
                     17: * size::
1.10    ! noro       18: * det nd_det invmat::
        !            19:
1.1       noro       20: * qsort::
                     21: @end menu
                     22:
1.2       noro       23: \JP @node newvect,,, $BG[Ns(B
                     24: \EG @node newvect,,, Arrays
1.1       noro       25: @subsection @code{newvect}
                     26: @findex newvect
                     27:
                     28: @table @t
                     29: @item newvect(@var{len}[,@var{list}])
1.2       noro       30: \JP :: $BD9$5(B @var{len} $B$N%Y%/%H%k$r@8@.$9$k(B.
                     31: \EG :: Creates a new vector object with its length @var{len}.
1.1       noro       32: @end table
                     33:
                     34: @table @var
                     35: @item return
1.2       noro       36: \JP $B%Y%/%H%k(B
                     37: \EG vector
1.1       noro       38: @item len
1.2       noro       39: \JP $B<+A3?t(B
                     40: \EG non-negative integer
1.1       noro       41: @item list
1.2       noro       42: \JP $B%j%9%H(B
                     43: \EG list
1.1       noro       44: @end table
                     45:
                     46: @itemize @bullet
1.2       noro       47: \BJP
1.1       noro       48: @item
                     49: $BD9$5(B @var{len} $B$N%Y%/%H%k$r@8@.$9$k(B. $BBh(B 2 $B0z?t$,$J$$>l9g(B,
                     50: $B3F@.J,$O(B 0 $B$K=i4|2=$5$l$k(B. $BBh(B 2 $B0z?t$,$"$k>l9g(B,
                     51: $B%$%s%G%C%/%9$N>.$5$$@.J,$+$i(B, $B%j%9%H$N(B
                     52: $B3FMWAG$K$h$j=i4|2=$5$l$k(B. $B3FMWAG$O(B, $B@hF,$+$i=g$K(B
                     53: $B;H$o$l(B, $BB-$j$J$$J,$O(B 0 $B$,Kd$a$i$l$k(B.
                     54: @item
                     55: $B%Y%/%H%k$N@.J,$O(B, $BBh(B 0 $B@.J,$+$iBh(B @var{len}-1 $B@.J,$H$J$k(B.
                     56: ($BBh(B 1 $B@.J,$+$i$G$O$J$$;v$KCm0U(B. )
                     57: @item
                     58: $B%j%9%H$O3F@.J,$,(B, $B%]%$%s%?$rC)$k;v$K$h$C$F%7!<%1%s%7%c%k$K(B
                     59: $B8F$S=P$5$l$k$N$KBP$7(B, $B%Y%/%H%k$O3F@.J,$,(B
                     60: $BBh0l@.J,$+$i$N%a%b%j>e$N(B displacement ($BJQ0L(B)$B$K$h$C$F%i%s%@%`%"%/%;%9$G(B
                     61: $B8F$S=P$5$l(B, $B$=$N7k2L(B, $B@.J,$N%"%/%;%9;~4V$KBg$-$J:9$,=P$F$/$k(B.
                     62: $B@.J,%"%/%;%9$O(B, $B%j%9%H$G$O(B, $B@.J,$NNL$,A}$($k$K=>$C$F(B
                     63: $B;~4V$,$+$+$k$h$&$K$J$k$,(B, $B%Y%/%H%k$G$O(B, $B@.J,$NNL$K0MB8$;$:$[$\0lDj$G$"$k(B.
                     64: @item
                     65: @b{Asir} $B$G$O(B, $B=D%Y%/%H%k(B, $B2#%Y%/%H%k$N6hJL$O$J$$(B.
                     66: $B9TNs$r:8$+$i3]$1$l$P=D%Y%/%H%k$H$_$J$5$l$k$7(B, $B1&$+$i3]$1$l$P2#%Y%/%H%k$H(B
                     67: $B$_$J$5$l$k(B.
                     68: @item
                     69: $B%Y%/%H%k$ND9$5$O(B @code{size()} $B$K$h$C$FF@$i$l$k(B.
                     70: @item
                     71: $BH!?t$N0z?t$H$7$F%Y%/%H%k$rEO$7$?>l9g(B, $BEO$5$l$?H!?t$O(B, $B$=$N%Y%/%H%k$N@.J,(B
                     72: $B$r=q$-49$($k$3$H$,$G$-$k(B.
1.2       noro       73: \E
                     74: \BEG
                     75: @item
                     76: Creates a new vector object with its length @var{len} and its elements
                     77: all cleared to value 0.
                     78: If the second argument, a list, is given, the vector is initialized by
                     79: the list elements.
                     80: Elements are used from the first through the last.
                     81: If the list is short for initializing the full vector,
                     82: 0's are filled in the remaining vector elements.
                     83: @item
                     84: Elements are indexed from 0 through @var{len}-1.  Note that the first
                     85: element has not index 1.
                     86: @item
                     87: List and vector are different types in @b{Asir}.
                     88: Lists are conveniently used for representing many data objects whose
                     89: size varies dynamically as computation proceeds.
                     90: By its flexible expressive power, it is also conveniently used to
                     91: describe initial values for other structured objects as you see
                     92: for vectors.
                     93: Access for an element of a list is performed by following pointers to
                     94: next elements.  By this, access costs for list elements differ for
                     95: each element.
                     96: In contrast to lists, vector elements can be accessed in a same time,
                     97: because they are accessed by computing displacements from the top memory
                     98: location of the vector object.
                     99:
                    100: Note also, in @b{Asir}, modification of an element of a vector causes
                    101: modification of the whole vector itself,
                    102: while modification of a list element does not cause the modification
                    103: of the whole list object.
                    104:
                    105: By this, in @b{Asir} language,
                    106: a vector element designator can be a left value of
                    107: assignment statement, but a list element designator can NOT be a left
                    108: value of assignment statement.
                    109:
                    110: @item
                    111: No distinction of column vectors and row vectors in @b{Asir}.
                    112: If a matrix is applied to a vector from left, the vector shall be taken
                    113: as a column vector, and if from right it shall be taken as a row vector.
                    114: @item
                    115: The length (or size or dimension) of a vector is given by function
                    116: @code{size()}.
                    117: @item
                    118: When a vector is passed to a function as its argument
                    119: (actual parameter), the vector element can be modified in that
                    120: function.
                    121:
                    122: @item
                    123: A vector is displayed in a similar format as for a list.
                    124: Note, however, there is a distinction: Elements of a vector are
                    125: separated simply by a `blank space', while those of a list by a `comma.'
                    126: \E
1.1       noro      127: @end itemize
                    128:
                    129: @example
                    130: [0] A=newvect(5);
                    131: [ 0 0 0 0 0 ]
                    132: [1] A=newvect(5,[1,2,3,4,[5,6]]);
                    133: [ 1 2 3 4 [5,6] ]
                    134: [2] A[0];
                    135: 1
                    136: [3] A[4];
                    137: [5,6]
                    138: [4] size(A);
                    139: [5]
                    140: [5] def afo(V) @{ V[0] = x; @}
                    141: [6] afo(A)$
                    142: [7] A;
                    143: [ x 2 3 4 [5,6] ]
                    144: @end example
                    145:
                    146: @table @t
1.2       noro      147: \JP @item $B;2>H(B
                    148: \EG @item References
1.9       ohara     149: @fref{newmat}, @fref{size}, @fref{ltov}, @fref{vtol}.
                    150: @end table
                    151:
                    152: \JP @node ltov,,, $BG[Ns(B
                    153: \EG @node ltov,,, Arrays
                    154: @subsection @code{ltov}
                    155: @findex ltov
                    156:
                    157: @table @t
                    158: @item ltov(@var{list})
                    159: \JP :: $B%j%9%H$r%Y%/%H%k$KJQ49$9$k(B.
                    160: \EG :: Converts a list into a vector.
                    161: @end table
                    162:
                    163: @table @var
                    164: @item return
                    165: \JP $B%Y%/%H%k(B
                    166: \EG vector
                    167: @item list
                    168: \JP $B%j%9%H(B
                    169: \EG list
                    170: @end table
                    171:
                    172: @itemize @bullet
                    173: \BJP
                    174: @item
                    175: $B%j%9%H(B @var{list} $B$rF1$8D9$5$N%Y%/%H%k$KJQ49$9$k(B.
                    176: @item
                    177: $B$3$N4X?t$O(B @code{newvect(length(@var{list}), @var{list})} $B$KEy$7$$(B.
                    178: \E
                    179: \BEG
                    180: @item
                    181: Converts a list @var{list} into a vector of same length.
                    182: See also @code{newvect()}.
                    183: \E
                    184: @end itemize
                    185:
                    186: @example
                    187: [3] A=[1,2,3];
                    188: [4] ltov(A);
                    189: [ 1 2 3 ]
                    190: @end example
                    191:
                    192: @table @t
                    193: \JP @item $B;2>H(B
                    194: \EG @item References
                    195: @fref{newvect}, @fref{vtol}.
1.1       noro      196: @end table
                    197:
1.2       noro      198: \JP @node vtol,,, $BG[Ns(B
                    199: \EG @node vtol,,, Arrays
1.1       noro      200: @subsection @code{vtol}
                    201: @findex vtol
                    202:
                    203: @table @t
                    204: @item vtol(@var{vect})
1.2       noro      205: \JP :: $B%Y%/%H%k$r%j%9%H$KJQ49$9$k(B.
                    206: \EG :: Converts a vector into a list.
1.1       noro      207: @end table
                    208:
                    209: @table @var
                    210: @item return
1.2       noro      211: \JP $B%j%9%H(B
                    212: \EG list
1.1       noro      213: @item vect
1.2       noro      214: \JP $B%Y%/%H%k(B
                    215: \EG vector
1.1       noro      216: @end table
                    217:
                    218: @itemize @bullet
1.2       noro      219: \BJP
1.1       noro      220: @item
                    221: $BD9$5(B @var{n} $B$N%Y%/%H%k(B @var{vect} $B$r(B
                    222:  @code{[@var{vect}[0],...,@var{vect}[@var{n}-1]]} $B$J$k%j%9%H$KJQ49$9$k(B.
                    223: @item
                    224: $B%j%9%H$+$i%Y%/%H%k$X$NJQ49$O(B @code{newvect()} $B$G9T$&(B.
1.2       noro      225: \E
                    226: \BEG
                    227: @item
                    228: Converts a vector @var{vect} of length @var{n} into
                    229: a list @code{[@var{vect}[0],...,@var{vect}[@var{n}-1]]}.
                    230: @item
                    231: A conversion from a list to a vector is done by @code{newvect()}.
                    232: \E
1.1       noro      233: @end itemize
                    234:
                    235: @example
                    236: [3] A=newvect(3,[1,2,3]);
                    237: [ 1 2 3 ]
                    238: [4] vtol(A);
                    239: [1,2,3]
1.4       noro      240: @end example
                    241:
                    242: @table @t
                    243: \JP @item $B;2>H(B
                    244: \EG @item References
1.9       ohara     245: @fref{newvect}, @fref{ltov}.
1.4       noro      246: @end table
                    247:
                    248: \JP @node newbytearray,,, $BG[Ns(B
                    249: \EG @node newbytearray,,, Arrays
                    250: @subsection @code{newbytearray}
                    251: @findex newbytearray
                    252:
                    253: @table @t
                    254: @item newbytearray(@var{len},[@var{listorstring}])
                    255: \JP :: $BD9$5(B @var{len} $B$N(B byte array $B$r@8@.$9$k(B.
                    256: \EG :: Creates a new byte array.
                    257: @end table
                    258:
                    259: @table @var
                    260: @item return
                    261: byte array
                    262: @item len
                    263: \JP $B<+A3?t(B
                    264: \EG non-negative integer
                    265: @item listorstring
                    266: \JP $B%j%9%H$^$?$OJ8;zNs(B
                    267: \EG list or string
                    268: @end table
                    269:
                    270: @itemize @bullet
                    271: @item
                    272: \JP @code{newvect} $B$HF1MM$K$7$F(B byte array $B$r@8@.$9$k(B.
                    273: \EG This function generates a byte array. The specification is
                    274: similar to that of @code{newvect}.
                    275: @item
                    276: \JP $BJ8;zNs$G=i4|CM$r;XDj$9$k$3$H$b2DG=$G$"$k(B.
                    277: \EG The initial value can be specified by a character string.
                    278: @item
                    279: \JP byte array $B$NMWAG$N%"%/%;%9$OG[Ns$HF1MM$G$"$k(B.
                    280: \EG One can access elements of a byte array just as an array.
                    281: @end itemize
                    282:
                    283: @example
                    284: [182] A=newbytearray(3);
                    285: |00 00 00|
                    286: [183] A=newbytearray(3,[1,2,3]);
                    287: |01 02 03|
                    288: [184] A=newbytearray(3,"abc");
                    289: |61 62 63|
                    290: [185] A[0];
                    291: 97
                    292: [186] A[1]=123;
                    293: 123
                    294: [187] A;
                    295: |61 7b 63|
1.1       noro      296: @end example
                    297:
                    298: @table @t
1.2       noro      299: \JP @item $B;2>H(B
                    300: \EG @item References
1.1       noro      301: @fref{newvect}.
                    302: @end table
                    303:
1.2       noro      304: \JP @node newmat,,, $BG[Ns(B
                    305: \EG @node newmat,,, Arrays
1.1       noro      306: @subsection @code{newmat}
                    307: @findex newmat
                    308:
                    309: @table @t
1.6       noro      310: @item newmat(@var{row},@var{col} [,[[@var{a},@var{b},...],[@var{c},@var{d},...],...]])
1.2       noro      311: \JP :: @var{row} $B9T(B @var{col} $BNs$N9TNs$r@8@.$9$k(B.
                    312: \EG :: Creates a new matrix with @var{row} rows and @var{col} columns.
1.1       noro      313: @end table
                    314:
                    315: @table @var
                    316: @item return
1.2       noro      317: \JP $B9TNs(B
                    318: \EG matrix
1.6       noro      319: @item row col
1.2       noro      320: \JP $B<+A3?t(B
                    321: \EG non-negative integer
1.6       noro      322: @item a b c d
1.2       noro      323: \JP $BG$0U(B
                    324: \EG arbitrary
1.1       noro      325: @end table
                    326:
                    327: @itemize @bullet
1.2       noro      328: \BJP
1.1       noro      329: @item
                    330: @var{row} $B9T(B @var{col} $BNs$N9TNs$r@8@.$9$k(B. $BBh(B 3 $B0z?t$,$J$$>l9g(B,
                    331: $B3F@.J,$O(B 0 $B$K=i4|2=$5$l$k(B. $BBh(B 3 $B0z?t$,$"$k>l9g(B,
                    332: $B%$%s%G%C%/%9$N>.$5$$@.J,$+$i(B, $B3F9T$,(B, $B%j%9%H$N(B
                    333: $B3FMWAG(B ($B$3$l$O$^$?%j%9%H$G$"$k(B) $B$K$h$j=i4|2=$5$l$k(B. $B3FMWAG$O(B, $B@hF,$+$i=g$K(B
                    334: $B;H$o$l(B, $BB-$j$J$$J,$O(B 0 $B$,Kd$a$i$l$k(B.
                    335: @item
                    336: $B9TNs$N%5%$%:$O(B @code{size()} $B$GF@$i$l$k(B.
                    337: @item
                    338: @code{M} $B$,9TNs$N$H$-(B, @code{M[I]} $B$K$h$jBh(B @code{I} $B9T$r%Y%/%H%k$H$7$F(B
                    339: $B<h$j=P$9$3$H$,$G$-$k(B. $B$3$N%Y%/%H%k$O(B, $B$b$H$N9TNs$H@.J,$r6&M-$7$F$*$j(B,
                    340: $B$$$:$l$+$N@.J,$r=q$-49$($l$P(B, $BB>$NBP1~$9$k@.J,$b=q$-49$o$k$3$H$K$J$k(B.
                    341: @item
                    342: $BH!?t$N0z?t$H$7$F9TNs$rEO$7$?>l9g(B, $BEO$5$l$?H!?t$O(B, $B$=$N9TNs$N@.J,(B
                    343: $B$r=q$-49$($k$3$H$,$G$-$k(B.
1.2       noro      344: \E
                    345: \BEG
                    346: @item
                    347: If the third argument, a list, is given, the newly created matrix
                    348: is initialized so that each element of the list (again a list)
                    349: initializes each of the rows of the matrix.
                    350: Elements are used from the first through the last.
                    351: If the list is short, 0's are filled in the remaining matrix elements.
                    352: If no third argument is given all the elements are cleared to 0.
                    353: @item
                    354: The size of a matrix is given by function  @code{size()}.
                    355: @item
                    356: Let @code{M} be a program variable assigned to a matrix.
                    357: Then, @code{M[I]} denotes a (row) vector which corresponds with
                    358: the @code{I}-th row of the matrix.
                    359: Note that the vector shares its element with the original matrix.
                    360: Subsequently, if an element of the vector is modified, then the
                    361: corresponding matrix element is also modified.
                    362: @item
                    363: When a matrix is passed to a function as its argument
                    364: (actual parameter), the matrix element can be modified within that
                    365: function.
                    366: \E
1.1       noro      367: @end itemize
                    368:
                    369: @example
                    370: [0] A = newmat(3,3,[[1,1,1],[x,y],[x^2]]);
                    371: [ 1 1 1 ]
                    372: [ x y 0 ]
                    373: [ x^2 0 0 ]
                    374: [1] det(A);
                    375: -y*x^2
                    376: [2] size(A);
                    377: [3,3]
                    378: [3] A[1];
                    379: [ x y 0 ]
                    380: [4] A[1][3];
                    381: getarray : Out of range
                    382: return to toplevel
                    383: @end example
                    384:
                    385: @table @t
1.2       noro      386: \JP @item $B;2>H(B
                    387: \EG @item References
1.10    ! noro      388: @fref{newvect}, @fref{size}, @fref{det nd_det invmat}.
1.1       noro      389: @end table
                    390:
1.2       noro      391: \JP @node size,,, $BG[Ns(B
                    392: \EG @node size,,, Arrays
1.1       noro      393: @subsection @code{size}
                    394: @findex size
                    395:
                    396: @table @t
                    397: @item size(@var{vect|mat})
1.2       noro      398: \JP :: @code{[@var{vect} $B$ND9$5(B]} $B$^$?$O(B @code{[@var{mat} $B$N9T?t(B,@var{mat} $B$NNs?t(B]}.
                    399: \BEG
                    400: :: A list containing the number of elements of the given vector,
                    401: @code{[size of @var{vect}]},
                    402: or a list containing row size and column size of the given matrix,
                    403: @code{[row size of @var{mat}, column size of @var{mat}]}.
                    404: \E
1.1       noro      405: @end table
                    406:
                    407: @table @var
                    408: @item return
1.2       noro      409: \JP $B%j%9%H(B
                    410: \EG list
1.1       noro      411: @item vect
1.2       noro      412: \JP $B%Y%/%H%k(B
                    413: \EG vector
1.1       noro      414: @item mat
1.2       noro      415: \JP $B9TNs(B
                    416: \EG matrix
1.1       noro      417: @end table
                    418:
                    419: @itemize @bullet
1.2       noro      420: \BJP
1.1       noro      421: @item
1.9       ohara     422: @var{vect} $B$ND9$5(B, $B$^$?$O(B @var{mat} $B$NBg$-$5$r%j%9%H$G=PNO$9$k(B.
                    423: @item
                    424: @var{vect} $B$ND9$5$O(B @code{length()} $B$G5a$a$k$3$H$b$G$-$k(B.
1.1       noro      425: @item
1.9       ohara     426: @var{list} $B$ND9$5$O(B @code{length()}$B$r(B, $BM-M}<0$K8=$l$kC19`<0$N?t$O(B @code{nmono()} $B$rMQ$$$k(B.
1.2       noro      427: \E
                    428: \BEG
                    429: @item
                    430: Return a list consisting of the dimension of the vector @var{vect},
                    431: or a list consisting of the row size and column size of the matrix
                    432: @var{matrix}.
                    433: @item
                    434: Use @code{length()} for the size of @var{list}, and
                    435: @code{nmono()} for the number of monomials with non-zero coefficients
                    436: in a rational expression.
                    437: \E
1.1       noro      438: @end itemize
                    439:
                    440: @example
                    441: [0] A = newvect(4);
                    442: [ 0 0 0 0 ]
                    443: [1] size(A);
                    444: [4]
1.9       ohara     445: [2] length(A);
                    446: 4
                    447: [3] B = newmat(2,3,[[1,2,3],[4,5,6]]);
1.1       noro      448: [ 1 2 3 ]
                    449: [ 4 5 6 ]
1.9       ohara     450: [4] size(B);
1.1       noro      451: [2,3]
                    452: @end example
                    453:
                    454: @table @t
1.2       noro      455: \JP @item $B;2>H(B
                    456: \EG @item References
1.1       noro      457: @fref{car cdr cons append reverse length}, @fref{nmono}.
                    458: @end table
                    459:
1.10    ! noro      460: \JP @node det nd_det invmat,,, $BG[Ns(B
        !           461: \EG @node det nd_det invmat,,, Arrays
1.5       noro      462: @subsection @code{det},@code{invmat}
1.1       noro      463: @findex det
1.5       noro      464: @findex invmat
1.1       noro      465:
                    466: @table @t
                    467: @item det(@var{mat}[,@var{mod}])
1.10    ! noro      468: @itemx nd_det(@var{mat}[,@var{mod}])
1.2       noro      469: \JP :: @var{mat} $B$N9TNs<0$r5a$a$k(B.
                    470: \EG :: Determinant of @var{mat}.
1.5       noro      471: @item invmat(@var{mat})
1.8       takayama  472: \JP :: @var{mat} $B$N5U9TNs$r5a$a$k(B.
1.5       noro      473: \EG :: Inverse matrix of @var{mat}.
1.1       noro      474: @end table
                    475:
                    476: @table @var
                    477: @item return
1.5       noro      478: \JP @code{det}: $B<0(B, @code{invmat}: $B%j%9%H(B
                    479: \EG @code{det}: expression, @code{invmat}: list
1.1       noro      480: @item mat
1.2       noro      481: \JP $B9TNs(B
                    482: \EG matrix
1.1       noro      483: @item mod
1.2       noro      484: \JP $BAG?t(B
                    485: \EG prime
1.1       noro      486: @end table
                    487:
                    488: @itemize @bullet
1.2       noro      489: \BJP
1.1       noro      490: @item
1.10    ! noro      491: @code{det} $B$*$h$S(B @code{nd_det} $B$O9TNs(B @var{mat} $B$N9TNs<0$r5a$a$k(B.
1.5       noro      492: @code{invmat} $B$O9TNs(B @var{mat} $B$N5U9TNs$r5a$a$k(B. $B5U9TNs$O(B @code{[$BJ,Jl(B, $BJ,;R(B]}
                    493: $B$N7A$GJV$5$l(B, @code{$BJ,Jl(B}$B$,9TNs(B, @code{$BJ,Jl(B/$BJ,;R(B} $B$,5U9TNs$H$J$k(B.
1.1       noro      494: @item
                    495: $B0z?t(B @var{mod} $B$,$"$k;~(B, GF(@var{mod}) $B>e$G$N9TNs<0$r5a$a$k(B.
                    496: @item
                    497: $BJ,?t$J$7$N%,%&%9>C5nK!$K$h$C$F$$$k$?$a(B, $BB?JQ?tB?9`<0$r@.J,$H$9$k(B
                    498: $B9TNs$KBP$7$F$O>.9TNs<0E83+$K$h$kJ}K!$N$[$&$,8zN($,$h$$>l9g$b$"$k(B.
1.10    ! noro      499: @item
        !           500: @code{nd_det} $B$OM-M}?t$^$?$OM-8BBN>e$NB?9`<09TNs$N9TNs<0(B
        !           501: $B7W;;@lMQ$G$"$k(B. $B%"%k%4%j%:%`$O$d$O$jJ,?t$J$7$N%,%&%9>C5nK!$@$,(B,
        !           502: $B%G!<%?9=B$$*$h$S>h=|;;$N9)IW$K$h$j(B, $B0lHL$K(B @code{det} $B$h$j9bB.$K(B
        !           503: $B7W;;$G$-$k(B.
1.2       noro      504: \E
                    505: \BEG
                    506: @item
1.10    ! noro      507: @code{det} and @code{nd_det} compute the determinant of matrix @var{mat}.
1.5       noro      508: @code{invmat} computes the inverse matrix of matrix @var{mat}.
                    509: @code{invmat} returns a list @code{[num,den]}, where @code{num}
                    510: is a matrix and @code{num/den} represents the inverse matrix.
1.2       noro      511: @item
                    512: The computation is done over GF(@var{mod}) if @var{mod} is specitied.
                    513: @item
                    514: The fraction free Gaussian algorithm is employed.  For matrices with
                    515: multi-variate polynomial entries, minor expansion algorithm sometimes
                    516: is more efficient than the fraction free Gaussian algorithm.
1.10    ! noro      517: @item
        !           518: @code{nd_det} can be used for computing the determinant of a matrix with
        !           519: polynomial entries over the rationals or finite fields. The algorithm
        !           520: is an improved vesion of the fraction free Gaussian algorithm
        !           521: and it computes the determinant faster than @code{det}.
1.2       noro      522: \E
1.1       noro      523: @end itemize
                    524:
                    525: @example
                    526: [91] A=newmat(5,5)$
                    527: [92] V=[x,y,z,u,v];
                    528: [x,y,z,u,v]
                    529: [93] for(I=0;I<5;I++)for(J=0,B=A[I],W=V[I];J<5;J++)B[J]=W^J;
                    530: [94] A;
                    531: [ 1 x x^2 x^3 x^4 ]
                    532: [ 1 y y^2 y^3 y^4 ]
                    533: [ 1 z z^2 z^3 z^4 ]
                    534: [ 1 u u^2 u^3 u^4 ]
                    535: [ 1 v v^2 v^3 v^4 ]
                    536: [95] fctr(det(A));
1.7       noro      537: [[1,1],[u-v,1],[-z+v,1],[-z+u,1],[-y+u,1],[y-v,1],[-y+z,1],[-x+u,1],
                    538: [-x+z,1],[-x+v,1],[-x+y,1]]
1.5       noro      539: [96] A = newmat(3,3)$
                    540: [97] for(I=0;I<3;I++)for(J=0,B=A[I],W=V[I];J<3;J++)B[J]=W^J;
                    541: [98] A;
                    542: [ 1 x x^2 ]
                    543: [ 1 y y^2 ]
                    544: [ 1 z z^2 ]
                    545: [99] invmat(A);
                    546: [[ -z*y^2+z^2*y z*x^2-z^2*x -y*x^2+y^2*x ]
                    547: [ y^2-z^2 -x^2+z^2 x^2-y^2 ]
                    548: [ -y+z x-z -x+y ],(-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y]
                    549: [100] A*B[0];
                    550: [ (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y 0 0 ]
                    551: [ 0 (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y 0 ]
                    552: [ 0 0 (-y+z)*x^2+(y^2-z^2)*x-z*y^2+z^2*y ]
                    553: [101] map(red,A*B[0]/B[1]);
                    554: [ 1 0 0 ]
                    555: [ 0 1 0 ]
                    556: [ 0 0 1 ]
1.1       noro      557: @end example
                    558:
                    559: @table @t
1.2       noro      560: \JP @item $B;2>H(B
                    561: \EG @item References
1.1       noro      562: @fref{newmat}.
                    563: @end table
                    564:
1.2       noro      565: \JP @node qsort,,, $BG[Ns(B
                    566: \EG @node qsort,,, Arrays
1.1       noro      567: @subsection @code{qsort}
                    568: @findex qsort
                    569:
                    570: @table @t
                    571: @item qsort(@var{array}[,@var{func}])
1.2       noro      572: \JP :: $B0l<!85G[Ns(B @var{array} $B$r%=!<%H$9$k(B.
                    573: \EG :: Sorts an array @var{array}.
1.1       noro      574: @end table
                    575:
                    576: @table @var
                    577: @item return
1.2       noro      578: \JP @var{array} ($BF~NO$HF1$8(B; $BMWAG$N$_F~$lBX$o$k(B)
                    579: \EG @var{array} (The same as the input; Only the elements are exchanged.)
1.1       noro      580: @item array
1.2       noro      581: \JP $B0l<!85G[Ns(B
                    582: \EG array
1.1       noro      583: @item func
1.2       noro      584: \JP $BHf3SMQ4X?t(B
                    585: \EG function for comparison
1.1       noro      586: @end table
                    587:
                    588: @itemize @bullet
1.2       noro      589: \BJP
1.1       noro      590: @item
                    591: $B0l<!85G[Ns$r(B quick sort $B$G%=!<%H$9$k(B.
                    592: @item
                    593: $BHf3SMQ4X?t$,;XDj$5$l$F$$$J$$>l9g(B, $B%*%V%8%'%/%H$I$&$7$NHf3S7k2L$G(B
                    594: $B=g=x$,2<$N$b$N$+$i=g$KJB$Y49$($i$l$k(B.
                    595: @item
                    596: 0, 1, -1 $B$rJV$9(B 2 $B0z?t4X?t$,(B @var{func} $B$H$7$FM?$($i$l$?>l9g(B,
                    597: @code{@var{func}(A,B)=1} $B$N>l9g$K(B @code{A<B} $B$H$7$F(B, $B=g=x$,2<$N(B
                    598: $B$b$N$+$i=g$KJB$Y49$($i$l$k(B.
                    599: @item
                    600: $BG[Ns$O?7$?$K@8@.$5$l$:(B, $B0z?t$NG[Ns$NMWAG$N$_F~$lBX$o$k(B.
1.2       noro      601: \E
                    602: \BEG
                    603: @item
                    604: This function sorts an array by @var{quick sort}.
                    605: @item
                    606: If @var{func} is not specified, the built-in comparison function
                    607: is used and the array is sorted in increasing order.
                    608: @item
                    609: If a function of two arguments @var{func} which returns 0, 1, or -1
                    610: is provided, then an ordering is detemined so that
                    611: @code{A<B} if @code{@var{func}(A,B)=1} holds, and
                    612: the array is sorted in increasing order with respect to the ordering.
                    613: @item
                    614: The returned array is the same as the input. Only the elements
                    615: are exchanged.
                    616: \E
1.1       noro      617: @end itemize
                    618:
                    619: @example
                    620: [0] qsort(newvect(10,[1,4,6,7,3,2,9,6,0,-1]));
                    621: [ -1 0 1 2 3 4 6 6 7 9 ]
                    622: [1] def rev(A,B) @{ return A>B?-1:(A<B?1:0); @}
                    623: [2] qsort(newvect(10,[1,4,6,7,3,2,9,6,0,-1]),rev);
                    624: [ 9 7 6 6 4 3 2 1 0 -1 ]
                    625: @end example
                    626:
                    627: @table @t
1.2       noro      628: \JP @item $B;2>H(B
                    629: \EG @item References
1.1       noro      630: @fref{ord}, @fref{vars}.
                    631: @end table

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>