[BACK]Return to num.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts / builtin

Annotation of OpenXM/src/asir-doc/parts/builtin/num.texi, Revision 1.9

1.9     ! ohara       1: @comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/num.texi,v 1.8 2003/04/19 15:44:59 noro Exp $
1.2       noro        2: \BJP
1.1       noro        3: @node $B?t$N1i;;(B,,, $BAH$_9~$_H!?t(B
                      4: @section $B?t$N1i;;(B
1.2       noro        5: \E
                      6: \BEG
                      7: @node Numbers,,, Built-in Function
                      8: @section Numbers
                      9: \E
1.1       noro       10:
                     11: @menu
                     12: * idiv irem::
                     13: * fac::
                     14: * igcd igcdcntl::
                     15: * ilcm::
                     16: * inv::
                     17: * prime lprime::
                     18: * random::
                     19: * mt_save mt_load::
                     20: * nm dn::
                     21: * conj real imag::
1.4       noro       22: * eval deval::
1.1       noro       23: * pari::
                     24: * setprec::
                     25: * setmod::
                     26: * lrandom::
1.3       noro       27: * ntoint32 int32ton::
1.1       noro       28: @end menu
                     29:
1.2       noro       30: \JP @node idiv irem,,, $B?t$N1i;;(B
                     31: \EG @node idiv irem,,, Numbers
1.1       noro       32: @subsection @code{idiv}, @code{irem}
                     33: @findex idiv
                     34: @findex irem
                     35:
                     36: @table @t
                     37: @item idiv(@var{i1},@var{i2})
1.2       noro       38: \JP :: $B@0?t=|;;$K$h$k>&(B.
                     39: \EG :: Integer quotient of @var{i1} divided by @var{i2}.
1.1       noro       40: @item irem(@var{i1},@var{i2})
1.2       noro       41: \JP :: $B@0?t=|;;$K$h$k>jM>(B.
                     42: \EG :: Integer remainder of @var{i1} divided by @var{i2}.
1.1       noro       43: @end table
                     44:
                     45: @table @var
                     46: @item return
1.2       noro       47: \JP $B@0?t(B
                     48: \EG integer
1.8       noro       49: @item i1 i2
1.2       noro       50: \JP $B@0?t(B
                     51: \EG integer
1.1       noro       52: @end table
                     53:
                     54: @itemize @bullet
1.2       noro       55: \BJP
1.1       noro       56: @item
                     57: @var{i1} $B$N(B @var{i2} $B$K$h$k@0?t=|;;$K$h$k>&(B, $B>jM>$r5a$a$k(B.
                     58: @item
                     59: @var{i2} $B$O(B 0 $B$G$"$C$F$O$J$i$J$$(B.
                     60: @item
                     61: $BHo=|?t$,Ii$N>l9g(B, $B@dBPCM$KBP$9$kCM$K%^%$%J%9$r$D$1$?CM$rJV$9(B.
                     62: @item
                     63: @var{i1} @code{%} @var{i2} $B$O(B, $B7k2L$,@5$K@55,2=$5$l$k$3$H$r=|$1$P(B
                     64: @code{irem()} $B$NBe$o$j$KMQ$$$k$3$H$,$G$-$k(B.
                     65: @item
                     66: $BB?9`<0$N>l9g$O(B @code{sdiv}, @code{srem} $B$rMQ$$$k(B.
1.2       noro       67: \E
                     68: \BEG
                     69: @item
                     70: Integer quotient and remainder of @var{i1} divided by @var{i2}.
                     71: @item
                     72: @var{i2} must not be 0.
                     73: @item
                     74: If the dividend is negative, the results are obtained by changing the
                     75: sign of the results for absolute values of the dividend.
                     76: @item
                     77: One can use
                     78: @var{i1} @code{%} @var{i2}
                     79: for replacement of @code{irem()} which only differs in the point that
                     80: the result is always normalized to non-negative values.
                     81: @item
                     82: Use @code{sdiv()}, @code{srem()} for polynomial quotient.
                     83: \E
1.1       noro       84: @end itemize
                     85:
                     86: @example
                     87: [0] idiv(100,7);
                     88: 14
                     89: [0] idiv(-100,7);
                     90: -14
                     91: [1] irem(100,7);
                     92: 2
                     93: [1] irem(-100,7);
                     94: -2
                     95: @end example
                     96:
                     97: @table @t
1.2       noro       98: \JP @item $B;2>H(B
                     99: \EG @item References
1.1       noro      100: @fref{sdiv sdivm srem sremm sqr sqrm}, @fref{%}.
                    101: @end table
                    102:
1.2       noro      103: \JP @node fac,,, $B?t$N1i;;(B
                    104: \EG @node fac,,, Numbers
1.1       noro      105: @subsection @code{fac}
                    106: @findex fac
                    107:
                    108: @table @t
                    109: @item fac(@var{i})
1.2       noro      110: \JP :: @var{i} $B$N3,>h(B.
                    111: \EG :: The factorial of @var{i}.
1.1       noro      112: @end table
                    113:
                    114: @table @var
                    115: @item return
1.2       noro      116: \JP $B@0?t(B
                    117: \EG integer
1.1       noro      118: @item i
1.2       noro      119: \JP $B@0?t(B
                    120: \EG integer
1.1       noro      121: @end table
                    122:
                    123: @itemize @bullet
1.2       noro      124: \BJP
1.1       noro      125: @item
                    126: @var{i} $B$N3,>h$r7W;;$9$k(B.
                    127: @item
                    128: @var{i} $B$,Ii$N>l9g$O(B 0 $B$rJV$9(B.
1.2       noro      129: \E
                    130: \BEG
                    131: @item
                    132: The factorial of @var{i}.
                    133: @item
                    134: Returns 0 if the argument @var{i} is negative.
                    135: \E
1.1       noro      136: @end itemize
                    137:
                    138: @example
                    139: [0] fac(50);
                    140: 30414093201713378043612608166064768844377641568960512000000000000
                    141: @end example
                    142:
1.2       noro      143: \JP @node igcd igcdcntl,,, $B?t$N1i;;(B
                    144: \EG @node igcd igcdcntl,,, Numbers
1.1       noro      145: @subsection @code{igcd},@code{igcdcntl}
                    146: @findex igcd
                    147: @findex igcdcntl
                    148:
                    149: @table @t
                    150: @item igcd(@var{i1},@var{i2})
1.2       noro      151: \JP :: $B@0?t$N(B GCD ($B:GBg8xLs?t(B)
                    152: \EG :: The integer greatest common divisor of @var{i1} and @var{i2}.
1.1       noro      153: @item igcdcntl([@var{i}])
1.2       noro      154: \JP :: $B@0?t(B GCD$B$N%"%k%4%j%:%`A*Br(B
                    155: \EG :: Selects an algorithm for integer GCD.
1.1       noro      156: @end table
                    157:
                    158: @table @var
                    159: @item return
1.2       noro      160: \JP $B@0?t(B
                    161: \EG integer
1.8       noro      162: @item i1 i2 i
1.2       noro      163: \JP $B@0?t(B
                    164: \EG integer
1.1       noro      165: @end table
                    166:
                    167: @itemize @bullet
1.2       noro      168: \BJP
1.1       noro      169: @item
                    170: @code{igcd} $B$O(B @var{i1} $B$H(B @var{i2} $B$N(B GCD $B$r5a$a$k(B.
                    171: @item
                    172: $B0z?t$,@0?t$G$J$$>l9g$O(B, $B%(%i!<$^$?$OL50UL#$J7k2L$rJV$9(B.
                    173: @item
                    174: $BB?9`<0$N>l9g$O(B, @code{gcd}, @code{gcdz} $B$rMQ$$$k(B.
                    175: @item
                    176: $B@0?t(B GCD $B$K$O$5$^$6$^$JJ}K!$,$"$j(B, @code{igcdcntl} $B$G@_Dj$G$-$k(B.
                    177:
                    178: @table @code
                    179: @item 0
                    180: Euclid $B8_=|K!(B (default)
                    181: @item 1
                    182: binary GCD
                    183: @item 2
                    184: bmod GCD
                    185: @item 3
                    186: accelerated integer GCD
                    187: @end table
1.2       noro      188: @code{2}, @code{3} $B$O(B @code{[Weber]} $B$K$h$k(B.
1.1       noro      189:
1.2       noro      190: $B$*$*$`$M(B @code{3} $B$,9bB.$@$,(B, $BNc30$b$"$k(B.
                    191: \E
                    192: \BEG
                    193: @item
                    194: Function @code{igcd()} returns the integer greatest common divisor of
                    195: the given two integers.
                    196: @item
                    197: An error will result if the argument is not an integer; the result is
                    198: not valid even if one is returned.
                    199: @item
                    200: Use @code{gcd()}, @code{gcdz()} for polynomial GCD.
                    201:
                    202: @item
                    203: Various method of integer GCD computation are implemented
                    204: and they can be selected by @code{igcdcntl}.
                    205:
                    206: @table @code
                    207: @item 0
                    208: Euclid algorithm (default)
                    209: @item 1
                    210: binary GCD
                    211: @item 2
                    212: bmod GCD
                    213: @item 3
                    214: accelerated integer GCD
                    215: @end table
                    216: @code{2}, @code{3} are due to @code{[Weber]}.
                    217:
                    218: In most cases @code{3} is the fastest, but there are exceptions.
                    219: \E
1.1       noro      220: @end itemize
                    221:
                    222: @example
                    223: [0] A=lrandom(10^4)$
                    224: [1] B=lrandom(10^4)$
                    225: [2] C=lrandom(10^4)$
                    226: [3] D=A*C$
                    227: [4] E=A*B$
                    228: [5] cputime(1)$
                    229: [6] igcd(D,E)$
                    230: 0.6sec + gc : 1.93sec(2.531sec)
                    231: [7] igcdcntl(1)$
                    232: [8] igcd(D,E)$
                    233: 0.27sec(0.2635sec)
                    234: [9] igcdcntl(2)$
                    235: [10] igcd(D,E)$
                    236: 0.19sec(0.1928sec)
                    237: [11] igcdcntl(3)$
                    238: [12] igcd(D,E)$
                    239: 0.08sec(0.08023sec)
                    240: @end example
                    241:
                    242: @table @t
1.2       noro      243: \JP @item $B;2>H(B
                    244: \EG @item References
1.1       noro      245: @fref{gcd gcdz}.
                    246: @end table
                    247:
1.2       noro      248: \JP @node ilcm,,, $B?t$N1i;;(B
                    249: \EG @node ilcm,,, Numbers
1.1       noro      250: @subsection @code{ilcm}
                    251: @findex ilcm
                    252:
                    253: @table @t
                    254: @item ilcm(@var{i1},@var{i2})
1.2       noro      255: \JP :: $B:G>.8xG\?t$r5a$a$k(B.
                    256: \EG :: The integer least common multiple of @var{i1} and @var{i2}.
1.1       noro      257: @end table
                    258:
                    259: @table @var
                    260: @item return
1.2       noro      261: \JP $B@0?t(B
                    262: \EG integer
1.8       noro      263: @item i1 i2
1.2       noro      264: \JP $B@0?t(B
                    265: \EG integer
1.1       noro      266: @end table
                    267:
                    268: @itemize @bullet
1.2       noro      269: \BJP
1.1       noro      270: @item
                    271: $B@0?t(B @var{i1}, @var{i2} $B$N:G>.8xG\?t$r5a$a$k(B.
                    272: @item
                    273: $B0lJ}$,(B 0 $B$N>l9g(B 0 $B$rJV$9(B.
1.2       noro      274: \E
                    275: \BEG
1.1       noro      276: @item
1.2       noro      277: This function computes the integer least common multiple of
                    278: @var{i1}, @var{i2}.
                    279: @item
                    280: If one of argument is equal to 0, the return 0.
                    281: \E
1.1       noro      282: @end itemize
                    283:
                    284: @table @t
1.2       noro      285: \JP @item $B;2>H(B
                    286: \EG @item References
1.1       noro      287: @fref{igcd igcdcntl}, @fref{mt_save mt_load}.
1.9     ! ohara     288: @end table
        !           289:
        !           290: \JP @node isqrt,,, $B?t$N1i;;(B
        !           291: \EG @node isqrt,,, Numbers
        !           292: @subsection @code{isqrt}
        !           293: @findex isqrt
        !           294:
        !           295: @table @t
        !           296: @item isqrt(@var{n})
        !           297: \JP :: $BJ?J}:,$r1[$($J$$:GBg$N@0?t$r5a$a$k(B.
        !           298: \EG :: The integer square root of @var{n}.
        !           299: @end table
        !           300:
        !           301: @table @var
        !           302: @item return
        !           303: \JP $BHsIi@0?t(B
        !           304: \EG non-negative integer
        !           305: @item n
        !           306: \JP $BHsIi@0?t(B
        !           307: \EG non-negative integer
1.1       noro      308: @end table
1.2       noro      309:
                    310: \JP @node inv,,, $B?t$N1i;;(B
                    311: \EG @node inv,,, Numbers
1.1       noro      312: @subsection @code{inv}
                    313: @findex inv
                    314:
                    315: @table @t
                    316: @item inv(@var{i},@var{m})
1.2       noro      317: \JP :: @var{m} $B$rK!$H$9$k(B @var{i} $B$N5U?t(B
                    318: \EG :: the inverse (reciprocal) of @var{i} modulo @var{m}.
1.1       noro      319: @end table
                    320:
                    321: @table @var
                    322: @item return
1.2       noro      323: \JP $B@0?t(B
                    324: \EG integer
1.8       noro      325: @item i m
1.2       noro      326: \JP $B@0?t(B
                    327: \EG integer
1.1       noro      328: @end table
                    329:
                    330: @itemize @bullet
1.2       noro      331: \BJP
1.1       noro      332: @item
                    333: @var{ia} @equiv{} 1 mod (@var{m}) $B$J$k@0?t(B @var{a} $B$r5a$a$k(B.
                    334: @item
                    335: @var{i} $B$H(B @var{m} $B$O8_$$$KAG$G$J$1$l$P$J$i$J$$$,(B, @code{inv()} $B$O(B
                    336: $B$=$N%A%'%C%/$O9T$o$J$$(B.
1.2       noro      337: \E
                    338: \BEG
                    339: @item
                    340: This function computes an integer such that
                    341: @var{ia} @equiv{} 1 mod (@var{m}).
                    342: @item
                    343: The integer @var{i} and  @var{m} must be mutually prime.
                    344: However, @code{inv()} does not check it.
                    345: \E
1.1       noro      346: @end itemize
                    347:
                    348: @example
                    349: [71] igcd(1234,4321);
                    350: 1
                    351: [72] inv(1234,4321);
                    352: 3239
                    353: [73] irem(3239*1234,4321);
                    354: 1
                    355: @end example
                    356:
                    357: @table @t
1.2       noro      358: \JP @item $B;2>H(B
                    359: \EG @item References
1.1       noro      360: @fref{igcd igcdcntl}.
                    361: @end table
                    362:
1.2       noro      363: \JP @node prime lprime,,, $B?t$N1i;;(B
                    364: \EG @node prime lprime,,, Numbers
1.1       noro      365: @subsection @code{prime}, @code{lprime}
                    366: @findex prime
                    367: @findex lprime
                    368:
                    369: @table @t
                    370: @item prime(@var{index})
                    371: @item lprime(@var{index})
1.2       noro      372: \JP :: $BAG?t$rJV$9(B
                    373: \EG :: Returns a prime number.
1.1       noro      374: @end table
                    375:
                    376: @table @var
                    377: @item return
1.2       noro      378: \JP $B@0?t(B
                    379: \EG integer
1.1       noro      380: @item index
1.2       noro      381: \JP $B@0?t(B
                    382: \EG integer
1.1       noro      383: @end table
                    384:
                    385: @itemize @bullet
1.2       noro      386: \BJP
1.1       noro      387: @item
                    388: @code{prime()}, @code{lprime()} $B$$$:$l$b%7%9%F%`$,FbIt$K;}$D(B
                    389: $BAG?tI=$NMWAG$rJV$9(B. @code{index} $B$O(B 0 $B0J>e$N@0?t$G(B, $BAG?tI=(B
                    390: $B$N%$%s%G%C%/%9$KMQ$$$i$l$k(B. @code{prime()} $B$O(B 16381 $B$^$G(B
                    391: $B$NAG?t$r>.$5$$=g$K(B 1900 $B8D(B, @code{lprime()} $B$O(B, 10 $B?J(B 8 $B7e$G:GBg$N(B
                    392: $BAG?t$+$iBg$-$$=g$K(B 999 $B8DJV$9(B. $B$=$l0J30$N%$%s%G%C%/%9$KBP$7$F$O(B
                    393: 0 $B$rJV$9(B.
                    394: @item
1.2       noro      395: $B$h$j0lHLE*$JAG?t@8@.H!?t$H$7$F$O(B,
                    396: @code{pari(nextprime,@var{number})}
1.1       noro      397: $B$,$"$k(B.
1.2       noro      398: \E
                    399: \BEG
                    400: @item
                    401: The two functions, @code{prime()} and @code{lprime()}, returns
                    402: an element stored in the system table of prime numbers.
                    403: Here, @code{index} is a non-negative integer and be used as an index
                    404: for the prime tables.
                    405: The function @code{prime()} can return one of 1900 primes
                    406: up to 16381 indexed so that the smaller one has smaller
                    407: index.  The function @code{lprime()} can return one of 999 primes which
                    408: are 8 digit sized and indexed so that the larger one has the smaller
                    409: index.
                    410: The two function always returns 0 for other indices.
                    411: @item
                    412: For more general function for prime generation, there is a @code{PARI}
                    413: function
                    414:
                    415: @code{pari(nextprime,@var{number})}.
                    416: \E
1.1       noro      417: @end itemize
                    418:
                    419: @example
                    420: [95] prime(0);
                    421: 2
                    422: [96] prime(1228);
                    423: 9973
                    424: [97] lprime(0);
                    425: 99999989
                    426: [98] lprime(999);
                    427: 0
                    428: @end example
                    429:
                    430: @table @t
1.2       noro      431: \JP @item $B;2>H(B
                    432: \EG @item References
1.1       noro      433: @fref{pari}.
                    434: @end table
                    435:
1.2       noro      436: \JP @node random,,, $B?t$N1i;;(B
                    437: \EG @node random,,, Numbers
1.1       noro      438: @subsection @code{random}
                    439: @findex random
                    440:
                    441: @table @t
1.5       takayama  442: @item random([@var{seed}])
1.2       noro      443: \JP :: $BMp?t$r@8@.$9$k(B.
1.1       noro      444: @end table
                    445:
                    446: @table @var
                    447: @item seed
1.2       noro      448: @itemx return
                    449: \JP $B<+A3?t(B
                    450: \EG non-negative integer
1.1       noro      451: @end table
                    452:
                    453: @itemize @bullet
1.2       noro      454: \BJP
1.1       noro      455: @item
                    456: $B:GBg(B 2^32-1 $B$NHsIi@0?t$NMp?t$r@8@.$9$k(B.
                    457: @item
                    458: 0 $B$G$J$$0z?t$,$"$k;~(B, $B$=$NCM$r(B seed $B$H$7$F@_Dj$7$F$+$i(B, $BMp?t$r@8@.$9$k(B.
                    459: @item
                    460: default $B$N(B seed $B$O8GDj$N$?$a(B, $B<o$r@_Dj$7$J$1$l$P(B, $B@8@.$5$l$kMp?t$N(B
                    461: $B7ONs$O5/F0Kh$K0lDj$G$"$k(B.
                    462: @item
                    463: $B>>K\bC(B-$B@>B<Bs;N$K$h$k(B Mersenne Twister (http://www.math.keio.ac.jp/matsumoto/mt.html) $B%"%k%4%j%:%`$N(B, $BH`$i<+?H$K$h$k<BAu$rMQ$$$F$$$k(B.
                    464: @item
                    465: $B<~4|$O(B 2^19937-1 $B$HHs>o$KD9$$(B.
                    466: @item
                    467: @code{mt_save} $B$K$h$j(B state $B$r%U%!%$%k$K(B save $B$G$-$k(B. $B$3$l$r(B @code{mt_load}
                    468: $B$GFI$_9~$`$3$H$K$h$j(B, $B0[$k(B Asir $B%;%C%7%g%s4V$G0l$D$NMp?t$N7ONs$rC)$k$3$H$,(B
                    469: $B$G$-$k(B.
1.2       noro      470: \E
                    471: \BEG
                    472: @item
                    473: Generates a random number which is a non-negative integer less than 2^32.
                    474: @item
                    475: If a non zero argument is specified, then after setting it as a random seed,
                    476: a random number is generated.
                    477: @item
                    478: As the default seed is fixed, the sequence of the random numbers is
                    479: always the same if a seed is not set.
                    480: @item
                    481: The algorithm is Mersenne Twister
                    482: (http://www.math.keio.ac.jp/matsumoto/mt.html) by M. Matsumoto and
                    483: T. Nishimura. The implementation is done also by themselves.
                    484: @item
                    485: The period of the random number sequence is 2^19937-1.
                    486: @item
                    487: One can save the state of the random number generator with @code{mt_save}.
                    488: By loading the state file with @code{mt_load},
                    489: one can trace a single random number sequence arcoss multiple sessions.
                    490: \E
1.1       noro      491: @end itemize
                    492:
                    493: @table @t
1.2       noro      494: \JP @item $B;2>H(B
                    495: \EG @item References
1.1       noro      496: @fref{lrandom}, @fref{mt_save mt_load}.
                    497: @end table
                    498:
1.2       noro      499: \JP @node lrandom,,, $B?t$N1i;;(B
                    500: \EG @node lrandom,,, Numbers
1.1       noro      501: @subsection @code{lrandom}
                    502: @findex lrandom
                    503:
                    504: @table @t
1.5       takayama  505: @item lrandom(@var{bit})
1.2       noro      506: \JP :: $BB?G\D9Mp?t$r@8@.$9$k(B.
                    507: \EG :: Generates a long random number.
1.1       noro      508: @end table
                    509:
                    510: @table @var
                    511: @item bit
                    512: @item return
1.2       noro      513: \JP $B<+A3?t(B
                    514: \EG integer
1.1       noro      515: @end table
                    516:
                    517: @itemize @bullet
1.2       noro      518: \BJP
1.1       noro      519: @item
                    520: $B9b!9(B @var{bit} $B$NHsIi@0?t$NMp?t$r@8@.$9$k(B.
                    521: @item
                    522: @code{random} $B$rJ#?t2s8F$S=P$7$F7k9g$7(B, $B;XDj$N(B bit $BD9$K%^%9%/$7$F$$$k(B.
1.2       noro      523: \E
                    524: \BEG
                    525: @item
                    526: Generates a non-negative integer of at most @var{bit} bits.
                    527: @item
                    528: The result is a concatination of outputs of @code{random}.
                    529: \E
1.1       noro      530: @end itemize
                    531:
                    532: @table @t
1.2       noro      533: \JP @item $B;2>H(B
                    534: \EG @item References
1.1       noro      535: @fref{random}, @fref{mt_save mt_load}.
                    536: @end table
                    537:
1.2       noro      538: \JP @node mt_save mt_load,,, $B?t$N1i;;(B
                    539: \EG @node mt_save mt_load,,, Numbers
1.1       noro      540: @subsection @code{mt_save}, @code{mt_load}
                    541: @findex mt_save
                    542: @findex mt_load
                    543:
                    544: @table @t
                    545: @item mt_save(@var{fname})
1.2       noro      546: \JP :: $BMp?t@8@.4o$N8=:_$N>uBV$r%U%!%$%k$K%;!<%V$9$k(B.
                    547: \EG :: Saves the state of the random number generator.
1.1       noro      548: @item mt_load(@var{fname})
1.2       noro      549: \JP :: $B%U%!%$%k$K%;!<%V$5$l$?Mp?t@8@.4o$N>uBV$r%m!<%I$9$k(B.
                    550: \EG :: Loads a saved state of the random number generator.
1.1       noro      551: @end table
                    552:
                    553: @table @var
                    554: @item return
1.2       noro      555: \JP 0 $B$^$?$O(B 1
                    556: \EG 0 or 1
1.1       noro      557: @item fname
1.2       noro      558: \JP $BJ8;zNs(B
                    559: \EG string
1.1       noro      560: @end table
                    561:
                    562: @itemize @bullet
1.2       noro      563: \BJP
                    564: @item
                    565: $B$"$k>uBV$r%;!<%V$7(B, $B$=$N>uBV$r%m!<%I$9$k$3$H$G(B,
1.1       noro      566: $B0l$D$N5?;wMp?t7ONs$r(B, $B?75,$N(B Asir $B%;%C%7%g%s$GB3$1$F$?$I$k$3$H$,(B
                    567: $B$G$-$k(B.
1.2       noro      568: \E
                    569: \BEG
                    570: @item
                    571: One can save the state of the random number generator with @code{mt_save}.
                    572: By loading the state file with @code{mt_load},
                    573: one can trace a single random number sequence arcoss multiple
                    574: @b{Asir} sessions.
                    575: \E
1.1       noro      576: @end itemize
                    577:
                    578: @example
                    579: [340] random();
                    580: 3510405877
                    581: [341] mt_save("/tmp/mt_state");
                    582: 1
                    583: [342] random();
                    584: 4290933890
                    585: [343] quit;
                    586: % asir
                    587: This is Asir, Version 991108.
                    588: Copyright (C) FUJITSU LABORATORIES LIMITED.
                    589: 3 March 1994. All rights reserved.
                    590: [340] mt_load("/tmp/mt_state");
                    591: 1
                    592: [341] random();
                    593: 4290933890
                    594: @end example
                    595:
                    596: @table @t
1.2       noro      597: \JP @item $B;2>H(B
                    598: \EG @item References
1.1       noro      599: @fref{random}, @fref{lrandom}.
                    600: @end table
                    601:
1.2       noro      602: \JP @node nm dn,,, $B?t$N1i;;(B
                    603: \EG @node nm dn,,, Numbers
1.1       noro      604: @subsection @code{nm}, @code{dn}
                    605: @findex nm
                    606: @findex dn
                    607:
                    608: @table @t
                    609: @item nm(@var{rat})
1.2       noro      610: \JP :: @var{rat} $B$NJ,;R(B.
                    611: \EG :: Numerator of @var{rat}.
1.1       noro      612: @item dn(@var{rat})
1.2       noro      613: \JP :: @var{rat} $B$NJ,Jl(B.
                    614: \EG :: Denominator of @var{rat}.
1.1       noro      615: @end table
                    616:
                    617: @table @var
                    618: @item return
1.2       noro      619: \JP $B@0?t$^$?$OB?9`<0(B
                    620: \EG integer or polynomial
1.1       noro      621: @item rat
1.2       noro      622: \JP $BM-M}?t$^$?$OM-M}<0(B
                    623: \EG rational number or rational expression
1.1       noro      624: @end table
                    625:
                    626: @itemize @bullet
1.2       noro      627: \BJP
1.1       noro      628: @item
                    629: $BM?$($i$l$?M-M}?t$^$?M-M}<0$NJ,;R5Z$SJ,Jl$rJV$9(B.
                    630: @item
                    631: $BM-M}?t$N>l9g(B, $BJ,Jl$O>o$K@5$G(B, $BId9f$OJ,;R$,;}$D(B.
                    632: @item
                    633: $BM-M}<0$N>l9g(B, $BC1$KJ,Jl(B, $BJ,;R$r<h$j=P$9$@$1$G$"$k(B.
                    634: $BM-M}<0$KBP$7$F$O(B, $BLsJ,$O<+F0E*$K$O9T$o$l$J$$(B. @code{red()}
                    635: $B$rL@<(E*$K8F$S=P$9I,MW$,$"$k(B.
1.2       noro      636: \E
                    637: \BEG
                    638: @item
                    639: Numerator and denominator of a given rational expression.
                    640: @item
                    641: For a rational number, they return its numerator and denominator,
                    642: respectively.  For a rational expression whose numerator and denominator
                    643: may contain rational numbers, they do not separate those rational
                    644: coefficients to numerators and denominators.
                    645: @item
                    646: For a rational number, the denominator is always kept positive, and
                    647: the sign is contained in the numerator.
                    648: @item
                    649: @b{Risa/Asir} does not cancel the common divisors unless otherwise explicitly
                    650: specified by the user.
                    651: Therefore, @code{nm()} and @code{dn()} return the numerator and the
                    652: denominator as it is, respectively.
                    653: \E
1.1       noro      654: @end itemize
                    655:
                    656: @example
                    657: [2] [nm(-43/8),dn(-43/8)];
                    658: [-43,8]
                    659: [3] dn((x*z)/(x*y));
                    660: y*x
                    661: [3] dn(red((x*z)/(x*y)));
                    662: y
                    663: @end example
                    664:
                    665: @table @t
1.2       noro      666: \JP @item $B;2>H(B
                    667: \EG @item References
1.1       noro      668: @fref{red}.
                    669: @end table
                    670:
1.2       noro      671: \JP @node conj real imag,,, $B?t$N1i;;(B
                    672: \EG @node conj real imag,,, Numbers
1.1       noro      673: @subsection @code{conj}, @code{real}, @code{imag}
                    674: @findex conj
                    675:
                    676: @table @t
                    677: @item real(@var{comp})
1.2       noro      678: \JP :: @var{comp} $B$N<B?tItJ,(B.
                    679: \EG :: Real part of @var{comp}.
1.1       noro      680: @item imag(@var{comp})
1.2       noro      681: \JP :: @var{comp} $B$N5u?tItJ,(B.
                    682: \EG :: Imaginary part of @var{comp}.
1.1       noro      683: @item conj(@var{comp})
1.2       noro      684: \JP :: @var{comp} $B$N6&LrJ#AG?t(B.
                    685: \EG :: Complex conjugate of @var{comp}.
1.1       noro      686: @end table
                    687:
                    688: @table @var
                    689: @item return comp
1.2       noro      690: \JP $BJ#AG?t(B
                    691: \EG complex number
1.1       noro      692: @end table
                    693:
                    694: @itemize @bullet
1.2       noro      695: \BJP
1.1       noro      696: @item
                    697: $BJ#AG?t$KBP$7(B, $B<BIt(B, $B5uIt(B, $B6&Lr$r5a$a$k(B.
                    698: @item
                    699: $B$3$l$i$O(B, $BB?9`<0$KBP$7$F$bF/$/(B.
1.2       noro      700: \E
                    701: \BEG
                    702: @item
                    703: Basic operations for complex numbers.
                    704: @item
                    705: These functions works also for polynomials with complex coefficients.
                    706: \E
1.1       noro      707: @end itemize
                    708:
                    709: @example
                    710: [111] A=(2+@@i)^3;
                    711: (2+11*@@i)
                    712: [112] [real(A),imag(A),conj(A)];
                    713: [2,11,(2-11*@@i)]
                    714: @end example
                    715:
1.4       noro      716: \JP @node eval deval ,,, $B?t$N1i;;(B
                    717: \EG @node eval deval,,, Numbers
                    718: @subsection @code{eval}, @code{deval}
1.1       noro      719: @findex eval
1.4       noro      720: @findex deval
1.1       noro      721: @cindex PARI
                    722:
                    723: @table @t
                    724: @item eval(@var{obj}[,@var{prec}])
1.4       noro      725: @item deval(@var{obj})
1.2       noro      726: \JP :: @var{obj} $B$NCM$NI>2A(B.
                    727: \EG :: Evaluate @var{obj} numerically.
1.1       noro      728: @end table
                    729:
                    730: @table @var
                    731: @item return
1.2       noro      732: \JP $B?t$"$k$$$O<0(B
                    733: \EG number or expression
1.1       noro      734: @item obj
1.2       noro      735: \JP $B0lHL$N<0(B
                    736: \EG general expression
1.1       noro      737: @item prec
1.2       noro      738: \JP $B@0?t(B
                    739: \EG integer
1.1       noro      740: @end table
                    741:
                    742: @itemize @bullet
1.2       noro      743: \BJP
1.1       noro      744: @item
                    745: @var{obj} $B$K4^$^$l$kH!?t$NCM$r2DG=$J8B$jI>2A$9$k(B.
                    746: @item
1.4       noro      747: @code{deval} $B$OG\@:EYIbF0>.?t$r7k2L$H$7$F(B
                    748: @code{eval} $B$N>l9g(B, $BM-M}?t$O$=$N$^$^;D$k(B.
1.1       noro      749: @item
1.7       noro      750: @code{eval} $B$K$*$$$F$O(B, $B7W;;$O(B @b{PARI} (@ref{pari}) $B$,9T$&(B.
1.4       noro      751: @code{deval} $B$K$*$$$F$O(B, $B7W;;$O(B C $B?t3X%i%$%V%i%j$N4X?t$rMQ$$$F9T$&(B.
                    752: @item
                    753: @code{deval} $B$OJ#AG?t$O07$($J$$(B.
                    754: @item
                    755: @code{eval} $B$K$*$$$F$O(B,
1.1       noro      756: @var{prec} $B$r;XDj$7$?>l9g(B, $B7W;;$O(B, 10 $B?J(B @var{prec} $B7eDxEY$G9T$o$l$k(B.
                    757: @var{prec} $B$N;XDj$,$J$$>l9g(B, $B8=:_@_Dj$5$l$F$$$k@:EY$G9T$o$l$k(B.
1.7       noro      758: (@xref{setprec}.)
1.1       noro      759: @item
                    760: @table @t
                    761: @item $B07$($kH!?t$O(B, $B<!$NDL$j(B.
                    762: @code{sin}, @code{cos}, @code{tan},
                    763:
                    764: @code{asin}, @code{acos}, @code{atan},
                    765:
                    766: @code{sinh}, @code{cosh}, @code{tanh},
                    767:
                    768: @code{asinh}, @code{acosh}, @code{atanh},
                    769:
                    770: @code{exp}, @code{log}, @code{pow(a,b) (a^b)}
                    771: @end table
                    772: @item
1.4       noro      773: $B0J2<$N5-9f$r?t$H$7$FI>2A$G$-$k(B. $B$?$@$7(B @code{@@i} $B$r07$($k$N$O(B
                    774: @code{eval}, @code{deval} $B$N$_$G$"$k(B.
1.1       noro      775: @table @t
                    776: @item @@i
                    777: $B5u?tC10L(B
                    778: @item @@pi
                    779: $B1_<~N((B
                    780: @item @@e
                    781: $B<+A3BP?t$NDl(B
                    782: @end table
1.2       noro      783: \E
                    784: \BEG
                    785: @item
                    786: Evaluates the value of the functions contained in @var{obj} as far as
                    787: possible.
                    788: @item
1.4       noro      789: @code{deval} returns
                    790: double float. Rational numbers remain unchanged in results from @code{eval}.
                    791: @item
                    792: In @code{eval} the computation is done
1.7       noro      793: by @b{PARI}. (@xref{pari}.) In @code{deval} the computation is
1.4       noro      794: done by the C math library.
                    795: @item
                    796: @code{deval} cannot handle complex numbers.
1.2       noro      797: @item
                    798: When @var{prec} is specified, computation will be performed with a
                    799: precision of about @var{prec}-digits.
                    800: If @var{prec} is not specified, computation is performed with the
1.7       noro      801: precision set currently. (@xref{setprec}.)
1.2       noro      802: @item
                    803: Currently available numerical functions are listed below.
                    804: Note they are only a small part of whole @b{PARI} functions.
                    805:
                    806: @table @t
                    807: @code{sin}, @code{cos}, @code{tan},
                    808:
                    809: @code{asin}, @code{acos}, @code{atan},
                    810:
                    811: @code{sinh}, @code{cosh}, @code{tanh},
                    812: @code{asinh}, @code{acosh}, @code{atanh},
                    813:
                    814: @code{exp}, @code{log}, @code{pow(a,b) (a^b)}
                    815: @end table
                    816: @item
1.4       noro      817: Symbols for special values are as the followings. Note that
                    818: @code{@@i} cannot be handled by @code{deval}.
1.2       noro      819: @table @t
                    820: @item @@i
                    821: unit of imaginary number
                    822: @item @@pi
                    823: the number pi,
                    824: the ratio of circumference to diameter
                    825: @item @@e
                    826: Napier's number (@t{exp}(1))
                    827: @end table
                    828: \E
1.1       noro      829: @end itemize
                    830:
                    831: @example
                    832: [118] eval(exp(@@pi*@@i));
                    833: -1.0000000000000000000000000000
                    834: [119] eval(2^(1/2));
                    835: 1.414213562373095048763788073031
                    836: [120] eval(sin(@@pi/3));
                    837: 0.86602540378443864674620506632
                    838: [121] eval(sin(@@pi/3)-3^(1/2)/2,50);
                    839: -2.78791084448179148471 E-58
1.4       noro      840: [122] eval(1/2);
                    841: 1/2
                    842: [123] deval(sin(1)^2+cos(1)^2);
                    843: 1
1.1       noro      844: @end example
                    845:
                    846: @table @t
1.2       noro      847: \JP @item $B;2>H(B
                    848: \EG @item References
1.1       noro      849: @fref{ctrl}, @fref{setprec}, @fref{pari}.
                    850: @end table
                    851:
1.2       noro      852: \JP @node pari,,, $B?t$N1i;;(B
                    853: \EG @node pari,,, Numbers
1.1       noro      854: @subsection @code{pari}
                    855: @findex pari
                    856: @cindex PARI
                    857:
                    858: @table @t
                    859: @item pari(@var{func},@var{arg},@var{prec})
1.2       noro      860: \JP :: @b{PARI} $B$NH!?t(B @var{func} $B$r8F$S=P$9(B.
                    861: \EG :: Call @b{PARI} function @var{func}.
1.1       noro      862: @end table
                    863:
                    864: @table @var
                    865: @item return
1.2       noro      866: \JP @var{func} $BKh$K0[$J$k(B.
                    867: \EG Depends on @var{func}.
1.1       noro      868: @item func
1.2       noro      869: \JP @b{PARI} $B$NH!?tL>(B
                    870: \EG Function name of @b{PARI}.
1.1       noro      871: @item arg
1.2       noro      872: \JP @var{func} $B$N0z?t(B
                    873: \EG Arguments of @var{func}.
1.1       noro      874: @item prec
1.2       noro      875: \JP $B@0?t(B
                    876: \EG integer
1.1       noro      877: @end table
                    878:
                    879: @itemize @bullet
1.2       noro      880: \BJP
1.1       noro      881: @item
                    882: @b{PARI} $B$NH!?t$r8F$S=P$9(B.
                    883:
                    884: @item
                    885: @b{PARI} @code{[Batut et al.]} $B$O(B Bordeaux $BBg3X$G3+H/$5$l%U(B
                    886: $B%j!<%=%U%H%&%'%"$H$7$F8x3+$5$l$F$$$k(B. @b{PARI} $B$O?t<0=hM}E*$J5!G=$rM-(B
                    887: $B$7$F$O$$$k$,(B, $B<g$J%?!<%2%C%H$O@0?tO@$K4XO"$7$??t(B (@b{bignum},
                    888: @b{bigfloat}) $B$N1i;;$G(B, $B;MB'1i;;$K8B$i$:(B@b{bigfloat} $B$K$h$k$5$^$6$^$J(B
                    889: $BH!?tCM$NI>2A$r9bB.$K9T$&$3$H$,$G$-$k(B. @b{PARI} $B$OB>$N%W%m%0%i%`$+$i(B
                    890: $B%5%V%k!<%A%s%i%$%V%i%j$H$7$FMQ$$$k$3$H$,$G$-(B, $B$^$?(B, @samp{gp} $B$H$$$&(B
                    891: @b{PARI}$B%i%$%V%i%j$N%$%s%?%U%'!<%9$K$h$j(B UNIX $B$N%"%W%j%1!<%7%g%s$H$7$F(B
1.2       noro      892: $BMxMQ$9$k$3$H$b$G$-$k(B. $B8=:_$N%P!<%8%g%s$O(B @b{2.0.17beta} $B$G$$$/$D$+$N(B ftp
                    893: site ($B$?$H$($P(B @code{ftp://megrez.ceremab.u-bordeaux.fr/pub/pari})
1.1       noro      894: $B$+$i(B anonymous ftp $B$G$-$k(B.
                    895: @item
                    896: $B:G8e$N0z?t(B @var{prec} $B$G7W;;@:EY$r;XDj$G$-$k(B.
                    897: @var{prec} $B$r>JN,$7$?>l9g(B @code{setprec()} $B$G;XDj$7$?@:EY$H$J$k(B.
                    898: @item
                    899: $B8=;~E@$G<B9T$G$-$k(B @b{PARI} $B$NH!?t$O<!$NDL$j$G$"$k(B. $B$$$:$l$b(B
                    900: 1 $B0z?t$G(B @b{Asir} $B$,BP1~$G$-$k7?$N0z?t$r$H$kH!?t$G$"$k(B.
                    901: $B$J$*3F!9$N5!G=$K$D$$$F$O(B @b{PARI} $B$N%^%K%e%"%k$r;2>H$N$3$H(B.
1.2       noro      902: \E
                    903: \BEG
                    904: @item
                    905: This command connects @b{Asir} to @b{PARI} system so that several
                    906: functions of @b{PARI} can be conveniently used from @b{Risa/Asir}.
                    907: @item
                    908: @b{PARI} @code{[Batut et al.]} is developed at Bordeaux University, and
                    909: distributed as a free software.  Though it has a certain facility to computer
                    910: algebra, its major target is the operation of numbers (@b{bignum},
                    911: @b{bigfloat}) related to the number theory.  It facilitates various
                    912: function evaluations as well as arithmetic operations at a remarkable
                    913: speed.  It can also be used from other external programs as a library.
                    914: It provides a language interface named @samp{gp} to its library, which
                    915: enables a user to use @b{PARI} as a calculator which runs on UNIX.
                    916: The current version is @b{2.0.17beta}.  It can be obtained by several ftp
                    917: sites. (For example, @code{ftp://megrez.ceremab.u-bordeaux.fr/pub/pari}.)
                    918: @item
                    919: The last argument (optional) @var{int} specifies the precision in digits
                    920: for bigfloat operation.
                    921: If the precision is not explicitly specified, operation will be performed
                    922: with the precision set by @code{setprec()}.
                    923: @item
                    924: Currently available functions of @b{PARI} system are as follows.
                    925: Note these are only a part of functions in @b{PARI} system.
                    926: For details of individual functions, refer to the @b{PARI} manual.
                    927: (Some of them can be seen in the following example.)
                    928: \E
1.1       noro      929:
                    930: @code{abs},
                    931: @code{adj},
                    932: @code{arg},
                    933: @code{bigomega},
                    934: @code{binary},
                    935: @code{ceil},
                    936: @code{centerlift},
                    937: @code{cf},
                    938: @code{classno},
                    939: @code{classno2},
                    940: @code{conj},
                    941: @code{content},
                    942: @code{denom},
                    943: @code{det},
                    944: @code{det2},
                    945: @code{detr},
                    946: @code{dilog},
                    947: @code{disc},
                    948: @code{discf},
                    949: @code{divisors},
                    950: @code{eigen},
                    951: @code{eintg1},
                    952: @code{erfc},
                    953: @code{eta},
                    954: @code{floor},
                    955: @code{frac},
                    956: @code{galois},
                    957: @code{galoisconj},
                    958: @code{gamh},
                    959: @code{gamma},
                    960: @code{hclassno},
                    961: @code{hermite},
                    962: @code{hess},
                    963: @code{imag},
                    964: @code{image},
                    965: @code{image2},
                    966: @code{indexrank},
                    967: @code{indsort},
                    968: @code{initalg},
                    969: @code{isfund},
                    970: @code{isprime},
                    971: @code{ispsp},
                    972: @code{isqrt},
                    973: @code{issqfree},
                    974: @code{issquare},
                    975: @code{jacobi},
                    976: @code{jell},
                    977: @code{ker},
                    978: @code{keri},
                    979: @code{kerint},
                    980: @code{kerintg1},
                    981: @code{kerint2},
                    982: @code{kerr},
                    983: @code{length},
                    984: @code{lexsort},
                    985: @code{lift},
                    986: @code{lindep},
                    987: @code{lll},
                    988: @code{lllg1},
                    989: @code{lllgen},
                    990: @code{lllgram},
                    991: @code{lllgramg1},
                    992: @code{lllgramgen},
                    993: @code{lllgramint},
                    994: @code{lllgramkerim},
                    995: @iftex
                    996: @break
                    997: @end iftex
                    998: @code{lllgramkerimgen},
                    999: @code{lllint},
                   1000: @code{lllkerim},
                   1001: @code{lllkerimgen},
                   1002: @code{lllrat},
                   1003: @code{lngamma},
                   1004: @code{logagm},
                   1005: @code{mat},
                   1006: @code{matrixqz2},
                   1007: @code{matrixqz3},
                   1008: @code{matsize},
                   1009: @code{modreverse},
                   1010: @code{mu},
                   1011: @code{nextprime},
                   1012: @code{norm},
                   1013: @code{norml2},
                   1014: @code{numdiv},
                   1015: @code{numer},
                   1016: @code{omega},
                   1017: @code{order},
                   1018: @code{ordred},
                   1019: @code{phi},
                   1020: @code{pnqn},
                   1021: @code{polred},
                   1022: @code{polred2},
                   1023: @code{primroot},
                   1024: @code{psi},
                   1025: @code{quadgen},
                   1026: @code{quadpoly},
                   1027: @code{real},
                   1028: @code{recip},
                   1029: @code{redcomp},
                   1030: @code{redreal},
                   1031: @code{regula},
                   1032: @code{reorder},
                   1033: @code{reverse},
                   1034: @code{rhoreal},
                   1035: @code{roots},
                   1036: @code{rootslong},
                   1037: @code{round},
                   1038: @code{sigma},
                   1039: @code{signat},
                   1040: @code{simplify},
                   1041: @code{smalldiscf},
                   1042: @code{smallfact},
                   1043: @code{smallpolred},
                   1044: @code{smallpolred2},
                   1045: @code{smith},
                   1046: @code{smith2},
                   1047: @code{sort},
                   1048: @code{sqr},
                   1049: @code{sqred},
                   1050: @code{sqrt},
                   1051: @code{supplement},
                   1052: @code{trace},
                   1053: @code{trans},
                   1054: @code{trunc},
                   1055: @code{type},
                   1056: @code{unit},
                   1057: @code{vec},
                   1058: @code{wf},
                   1059: @code{wf2},
                   1060: @code{zeta}
                   1061:
1.2       noro     1062: \BJP
1.1       noro     1063: @item
                   1064: @b{Asir} $B$GMQ$$$F$$$k$N$O(B @b{PARI} $B$N$[$s$N0lIt$N5!G=$G$"$k$,(B, $B:#8e(B
                   1065: $B$h$jB?$/$N5!G=$,MxMQ$G$-$k$h$&2~NI$9$kM=Dj$G$"$k(B.
1.2       noro     1066: \E
                   1067: \BEG
                   1068: @item
                   1069: @b{Asir} currently uses only a very small subset of @b{PARI}.
                   1070: We will improve @b{Asir} so that it can provide more functions of
                   1071: @b{PARI}.
                   1072: \E
1.1       noro     1073: @end itemize
                   1074:
                   1075: @example
1.2       noro     1076: \JP /* $B9TNs$N8GM-%Y%/%H%k$r5a$a$k(B. */
                   1077: \EG /* Eigen vectors of a numerical matrix */
1.1       noro     1078: [0] pari(eigen,newmat(2,2,[[1,1],[1,2]]));
                   1079: [ -1.61803398874989484819771921990 0.61803398874989484826 ]
                   1080: [ 1 1 ]
1.2       noro     1081: \JP /* 1 $BJQ?tB?9`<0$N:,$r5a$a$k(B. */
                   1082: \EG /* Roots of a polynomial */
1.1       noro     1083: [1] pari(roots,t^2-2);
                   1084: [ -1.41421356237309504876 1.41421356237309504876 ]
                   1085: @end example
                   1086:
                   1087: @table @t
1.2       noro     1088: \JP @item $B;2>H(B
                   1089: \EG @item References
1.1       noro     1090: @fref{setprec}.
                   1091: @end table
                   1092:
1.2       noro     1093: \JP @node setprec,,, $B?t$N1i;;(B
                   1094: \EG @node setprec,,, Numbers
1.1       noro     1095: @subsection @code{setprec}
                   1096: @findex setprec
                   1097: @cindex PARI
                   1098:
                   1099: @table @t
                   1100: @item setprec([@var{n}])
1.2       noro     1101: \JP :: @b{bigfloat} $B$N7e?t$r(B @var{n} $B7e$K@_Dj$9$k(B.
                   1102: \EG :: Sets the precision for @b{bigfloat} operations to @var{n} digits.
1.1       noro     1103: @end table
                   1104:
                   1105: @table @var
                   1106: @item return
1.2       noro     1107: \JP $B@0?t(B
                   1108: \EG integer
1.1       noro     1109: @item n
1.2       noro     1110: \JP $B@0?t(B
                   1111: \EG integer
1.1       noro     1112: @end table
                   1113:
                   1114: @itemize @bullet
1.2       noro     1115: \BJP
1.1       noro     1116: @item
                   1117: $B0z?t$,$"$k>l9g(B, @b{bigfloat} $B$N7e?t$r(B @var{n} $B7e$K@_Dj$9$k(B.
                   1118: $B0z?t$N$"$k$J$7$K$+$+$o$i$:(B, $B0JA0$K@_Dj$5$l$F$$$?CM$rJV$9(B.
                   1119: @item
1.7       noro     1120: @b{bigfloat} $B$N7W;;$O(B @b{PARI} (@ref{pari}) $B$K$h$C$F9T$o$l$k(B.
1.1       noro     1121: @item
                   1122: @b{bigfloat} $B$G$N7W;;$KBP$7M-8z$G$"$k(B.
                   1123: @b{bigfloat} $B$N(B flag $B$r(B on $B$K$9$kJ}K!$O(B, @code{ctrl} $B$r;2>H(B.
                   1124: @item
                   1125: $B@_Dj$G$-$k7e?t$K>e8B$O$J$$$,(B, $B;XDj$7$?7e?t$K@_Dj$5$l$k$H$O(B
                   1126: $B8B$i$J$$(B. $BBg$-$a$NCM$r@_Dj$9$k$N$,0BA4$G$"$k(B.
1.2       noro     1127: \E
                   1128: \BEG
                   1129: @item
                   1130: When an argument is given, it
                   1131: sets the precision for @b{bigfloat} operations to @var{n} digits.
                   1132: The return value is always the previous precision in digits regardless of
                   1133: the existence of an argument.
                   1134:
                   1135: @item
1.7       noro     1136: @b{Bigfloat} operations are done by @b{PARI}. (@xref{pari}.)
1.2       noro     1137: @item
                   1138: This is effective for computations in @b{bigfloat}.
                   1139: Refer to @code{ctrl()} for turning on the `@b{bigfloat} flag.'
                   1140: @item
                   1141: There is no upper limit for precision digits.
                   1142: It sets the precision to some digits around the specified precision.
                   1143: Therefore, it is safe to specify a larger value.
                   1144: \E
1.1       noro     1145: @end itemize
                   1146:
                   1147: @example
                   1148: [1] setprec();
                   1149: 9
                   1150: [2] setprec(100);
                   1151: 9
                   1152: [3] setprec(100);
                   1153: 96
                   1154: @end example
                   1155:
                   1156: @table @t
1.2       noro     1157: \JP @item $B;2>H(B
1.4       noro     1158: @fref{ctrl}, @fref{eval deval}, @fref{pari}.
1.1       noro     1159: @end table
                   1160:
1.2       noro     1161: \JP @node setmod,,, $B?t$N1i;;(B
                   1162: \EG @node setmod,,, Numbers
1.1       noro     1163: @subsection @code{setmod}
                   1164: @findex setmod
                   1165:
                   1166: @table @t
                   1167: @item setmod([@var{p}])
1.2       noro     1168: \JP :: $BM-8BBN$r(B GF(@var{p}) $B$K@_Dj$9$k(B.
                   1169: \EG :: Sets the ground field to GF(@var{p}).
1.1       noro     1170: @end table
                   1171:
                   1172: @table @var
                   1173: @item return
1.2       noro     1174: \JP $B@0?t(B
                   1175: \EG integer
1.1       noro     1176: @item n
1.2       noro     1177: \JP 2^27 $BL$K~$NAG?t(B
                   1178: \EG prime less than 2^27
1.1       noro     1179: @end table
                   1180:
                   1181: @itemize @bullet
1.2       noro     1182: \BJP
1.1       noro     1183: @item
                   1184: $BM-8BBN$r(B GF(@var{p}) $B$K@_Dj$9$k(B. $B@_DjCM$rJV$9(B.
                   1185: @item
                   1186: $BM-8BBN$N85$N7?$r;}$D?t$O(B, $B$=$l<+?H$O$I$NM-8BBN$KB0$9$k$+$N>pJs$r;}$?$:(B,
                   1187: $B8=:_@_Dj$5$l$F$$$kAG?t(B @var{p} $B$K$h$j(B GF(@var{p}) $B>e$G$N1i;;$,E,MQ$5$l$k(B.
1.2       noro     1188: @item
                   1189: $B0L?t$NBg$-$JM-8BBN$K4X$7$F$O(B @pxref{$BM-8BBN$K4X$9$k1i;;(B}.
                   1190: \E
                   1191: \BEG
                   1192: @item
                   1193: Sets the ground field to GF(@var{p}) and returns the value @var{p}.
                   1194: @item
                   1195: A member of a finite field does not have any information
                   1196: about the field and the arithmetic operations over GF(@var{p}) are applied
                   1197: with @var{p} set at the time.
                   1198: @item
                   1199: As for large finite fields, @pxref{Finite fields}.
                   1200: \E
1.1       noro     1201: @end itemize
                   1202:
                   1203: @example
                   1204: [0] A=dp_mod(dp_ptod(2*x,[x]),3,[]);
                   1205: (2)*<<1>>
                   1206: [1] A+A;
                   1207: addmi : invalid modulus
                   1208: return to toplevel
                   1209: [1] setmod(3);
                   1210: 3
                   1211: [2] A+A;
                   1212: (1)*<<1>>
                   1213: @end example
                   1214:
                   1215: @table @t
1.2       noro     1216: \JP @item $B;2>H(B
                   1217: \EG @item References
                   1218: \JP @fref{dp_mod dp_rat}, @fref{$B?t$N7?(B}.
                   1219: \EG @fref{dp_mod dp_rat}, @fref{Types of numbers}.
1.1       noro     1220: @end table
                   1221:
1.3       noro     1222: \JP @node ntoint32 int32ton,,, $B?t$N1i;;(B
                   1223: \EG @node ntoint32 int32ton,,, Numbers
                   1224: @subsection @code{ntoint32}, @code{int32ton}
                   1225: @findex ntoint32
                   1226: @findex int32ton
                   1227:
                   1228: @table @t
                   1229: @item ntoint32(@var{n})
                   1230: @itemx int32ton(@var{int32})
                   1231: \JP :: $BHsIi@0?t$HId9f$J$7(B 32bit $B@0?t$N4V$N7?JQ49(B.
                   1232: \EG :: Type-conversion between a non-negative integer and an unsigned 32bit integer.
                   1233: @end table
                   1234:
                   1235: @table @var
                   1236: @item return
                   1237: \JP $BId9f$J$7(B 32bit $B@0?t$^$?$OHsIi@0?t(B
                   1238: \EG unsigned 32bit integer or non-negative integer
                   1239: @item n
                   1240: \JP 2^32 $BL$K~$NHsIi@0?t(B
                   1241: \EG non-negative interger less than 2^32
                   1242: @item int32
                   1243: \JP $BId9f$J$7(B 32bit $B@0?t(B
                   1244: \EG unsigned 32bit integer
                   1245: @end table
                   1246:
                   1247: @itemize @bullet
                   1248: \BJP
                   1249: @item $BHsIi@0?t(B ($B<1JL;R(B 1) $B$NId9f$J$7(B 32bit $B@0?t(B ($B<1JL;R(B 10) $B$X$NJQ49(B,
                   1250: $B$^$?$O$=$N5UJQ49$r9T$&(B.
                   1251: @item 32bit $B@0?t$O(B @b{OpenXM} $B$N4pK\9=@.MWAG$G$"$j(B, $B@0?t$r$=$N7?$GAw?.(B
                   1252: $B$9$kI,MW$,$"$k>l9g$KMQ$$$k(B.
                   1253: \E
                   1254: \BEG
                   1255: @item These functions do conversions between non-negative
                   1256: integers (the type id 1) and unsigned 32bit integers (the type id 10).
                   1257: @item An unsigned 32bit integer is a fundamental construct of @b{OpenXM}
                   1258: and one often has to send an integer to a server as an unsigned 32bit
                   1259: integer. These functions are used in such a case.
                   1260: \E
                   1261: @end itemize
                   1262:
                   1263: @table @t
                   1264: \JP @item $B;2>H(B
                   1265: \EG @item References
                   1266: \JP @fref{$BJ,;67W;;(B}, @fref{$B?t$N7?(B}.
                   1267: \EG @fref{Distributed computation}, @fref{Types of numbers}.
                   1268: @end table

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>