[BACK]Return to poly.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts / builtin

Annotation of OpenXM/src/asir-doc/parts/builtin/poly.texi, Revision 1.1.1.1

1.1       noro        1: @node $BB?9`<0$*$h$SM-M}<0$N1i;;(B,,, $BAH$_9~$_H!?t(B
                      2: @section $BB?9`<0(B, $BM-M}<0$N1i;;(B
                      3:
                      4: @menu
                      5: * var::
                      6: * vars::
                      7: * uc::
                      8: * coef::
                      9: * deg mindeg::
                     10: * nmono::
                     11: * ord::
                     12: * sdiv sdivm srem sremm sqr sqrm::
                     13: * tdiv::
                     14: * %::
                     15: * subst psubst::
                     16: * diff::
                     17: * res::
                     18: * fctr sqfr::
                     19: * modfctr::
                     20: * ufctrhint::
                     21: * ptozp::
                     22: * prim cont::
                     23: * gcd gcdz::
                     24: * red::
                     25: @end menu
                     26:
                     27: @node var,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                     28: @subsection @code{var}
                     29: @findex var
                     30:
                     31: @table @t
                     32: @item var(@var{rat})
                     33: :: @var{rat} $B$N<gJQ?t(B.
                     34: @end table
                     35:
                     36: @table @var
                     37: @item return
                     38: $BITDj85(B
                     39: @item rat
                     40: $BM-M}<0(B
                     41: @end table
                     42:
                     43: @itemize @bullet
                     44: @item
                     45: $B<gJQ?t$K4X$7$F$O(B, @xref{Asir $B$G;HMQ2DG=$J7?(B}.
                     46: @item
                     47: $B%G%U%)%k%H$NJQ?t=g=x$O<!$N$h$&$K$J$C$F$$$k(B.
                     48:
                     49: @code{x}, @code{y}, @code{z}, @code{u}, @code{v}, @code{w}, @code{p}, @code{q}, @code{r}, @code{s}, @code{t}, @code{a}, @code{b}, @code{c}, @code{d}, @code{e},
                     50: @code{f}, @code{g}, @code{h}, @code{i}, @code{j}, @code{k}, @code{l}, @code{m}, @code{n}, @code{o},$B0J8e$OJQ?t$N8=$l$?=g(B.
                     51: @end itemize
                     52:
                     53: @example
                     54: [0] var(x^2+y^2+a^2);
                     55: x
                     56: [1] var(a*b*c*d*e);
                     57: a
                     58: [2] var(3/abc+2*xy/efg);
                     59: abc
                     60: @end example
                     61:
                     62: @table @t
                     63: @item $B;2>H(B
                     64: @fref{ord}, @fref{vars}.
                     65: @end table
                     66:
                     67: @node vars,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                     68: @subsection @code{vars}
                     69: @findex vars
                     70:
                     71: @table @t
                     72: @item vars(@var{obj})
                     73: :: @var{obj} $B$K4^$^$l$kJQ?t$N%j%9%H(B.
                     74: @end table
                     75:
                     76: @table @var
                     77: @item return
                     78: $B%j%9%H(B
                     79: @item obj
                     80: $BG$0U(B
                     81: @end table
                     82:
                     83: @itemize @bullet
                     84: @item
                     85: $BM?$($i$l$?<0$K4^$^$l$kJQ?t$N%j%9%H$rJV$9(B.
                     86: @item
                     87: $BJQ?t=g=x$N9b$$$b$N$+$i=g$KJB$Y$k(B.
                     88: @end itemize
                     89:
                     90: @example
                     91: [0] vars(x^2+y^2+a^2);
                     92: [x,y,a]
                     93: [1] vars(3/abc+2*xy/efg);
                     94: [abc,xy,efg]
                     95: [2] vars([x,y,z]);
                     96: [x,y,z]
                     97: @end example
                     98:
                     99: @table @t
                    100: @item $B;2>H(B
                    101: @fref{var}, @fref{uc}, @fref{ord}.
                    102: @end table
                    103:
                    104: @node uc,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    105: @subsection @code{uc}
                    106: @findex uc
                    107:
                    108: @table @t
                    109: @item uc()
                    110: :: $B?7$?$JITDj85$r@8@.$9$k(B.
                    111: @end table
                    112:
                    113: @table @var
                    114: @item return
                    115: @code{vtype} $B$,(B 1 $B$NITDj85(B
                    116: @end table
                    117:
                    118: @itemize @bullet
                    119: @item
                    120: @code{uc()} $B$r<B9T$9$k$?$S$K(B, @code{_0}, @code{_1}, @code{_2},... $B$H$$$&(B
                    121: $BITDj85$r@8@.$9$k(B.
                    122: @item
                    123: @code{uc()} $B$G@8@.$5$l$?ITDj85$O(B, $BD>@\%-!<%\!<%I$+$iF~NO$9$k$3$H$,$G$-$J$$(B.
                    124: $B$3$l$O(B, $B%W%m%0%i%`Cf$GL$Dj78?t$r<+F0@8@.$9$k>l9g(B, $BF~NO$J$I$K4^$^$l$k(B
                    125: $BITDj85$HF10l$N$b$N$,@8@.$5$l$k$3$H$rKI$0$?$a$G$"$k(B.
                    126: @item
                    127: $BDL>o$NITDj85(B (@code{vtype} $B$,(B 0) $B$N<+F0@8@.$K$O(B @code{rtostr()},
                    128: @code{strtov()} $B$rMQ$$$k(B.
                    129: @item
                    130: @code{uc()} $B$G@8@.$5$l$?ITDj85$NITDj85$H$7$F$N7?(B (@code{vtype}) $B$O(B 1 $B$G$"$k(B.
                    131: (@xref{$BITDj85$N7?(B})
                    132: @end itemize
                    133:
                    134: @example
                    135: [0] A=uc();
                    136: _0
                    137: [1] B=uc();
                    138: _1
                    139: [2] (uc()+uc())^2;
                    140: _2^2+2*_3*_2+_3^2
                    141: [3] (A+B)^2;
                    142: _0^2+2*_1*_0+_1^2
                    143: @end example
                    144:
                    145: @table @t
                    146: @item $B;2>H(B
                    147: @fref{vtype}, @fref{rtostr}, @fref{strtov}.
                    148: @end table
                    149:
                    150: @node coef,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    151: @subsection @code{coef}
                    152: @findex coef
                    153:
                    154: @table @t
                    155: @item coef(@var{poly},@var{deg}[,@var{var}])
                    156: :: @var{poly} $B$N(B @var{var} ($B>JN,;~$O<gJQ?t(B) $B$K4X$9$k(B @var{deg} $B<!$N78?t(B.
                    157: @end table
                    158:
                    159: @table @var
                    160: @item return
                    161: $BB?9`<0(B
                    162: @item poly
                    163: $BB?9`<0(B
                    164: @item var
                    165: $BITDj85(B
                    166: @item deg
                    167: $B<+A3?t(B
                    168: @end table
                    169:
                    170: @itemize @bullet
                    171: @item
                    172: @var{poly} $B$N(B @var{var} $B$K4X$9$k(B @var{deg} $B<!$N78?t$r=PNO$9$k(B.
                    173: @item
                    174: @var{var} $B$O(B, $B>JN,$9$k$H<gJQ?t(B @t{var}(@var{poly}) $B$@$H$_$J$5$l$k(B.
                    175: @item
                    176: @var{var} $B$,<gJQ?t$G$J$$;~(B, @var{var} $B$,<gJQ?t$N>l9g$KHf3S$7$F(B
                    177: $B8zN($,Mn$A$k(B.
                    178: @end itemize
                    179:
                    180: @example
                    181: [0] A = (x+y+z)^3;
                    182: x^3+(3*y+3*z)*x^2+(3*y^2+6*z*y+3*z^2)*x+y^3+3*z*y^2+3*z^2*y+z^3
                    183: [1] coef(A,1,y);
                    184: 3*x^2+6*z*x+3*z^2
                    185: [2] coef(A,0);
                    186: y^3+3*z*y^2+3*z^2*y+z^3
                    187: @end example
                    188:
                    189: @table @t
                    190: @item $B;2>H(B
                    191: @fref{var}, @fref{deg mindeg}.
                    192: @end table
                    193:
                    194: @node deg mindeg,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    195: @subsection @code{deg}, @code{mindeg}
                    196: @findex deg
                    197: @findex mindeg
                    198:
                    199: @table @t
                    200: @item deg(@var{poly},@var{var})
                    201: :: @var{poly} $B$N(B, $BJQ?t(B @var{var} $B$K4X$9$k:G9b<!?t(B.
                    202: @item mindeg(@var{poly},@var{var})
                    203: :: @var{poly} $B$N(B, $BJQ?t(B @var{var} $B$K4X$9$k:GDc<!?t(B.
                    204: @end table
                    205:
                    206: @table @var
                    207: @item return
                    208: $B<+A3?t(B
                    209: @item poly
                    210: $BB?9`<0(B
                    211: @item var
                    212: $BITDj85(B
                    213: @end table
                    214:
                    215: @itemize @bullet
                    216: @item
                    217: $BM?$($i$l$?B?9`<0$NJQ?t(B @var{var} $B$K4X$9$k:G9b<!?t(B, $B:GDc<!?t$r=PNO$9$k(B.
                    218: @item
                    219: $BJQ?t(B @var{var} $B$r>JN,$9$k$3$H$O=PMh$J$$(B.
                    220: @end itemize
                    221:
                    222: @example
                    223: [0] deg((x+y+z)^10,x);
                    224: 10
                    225: [1] deg((x+y+z)^10,w);
                    226: 0
                    227: [75] mindeg(x^2+3*x*y,x);
                    228: 1
                    229: @end example
                    230:
                    231: @node nmono,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    232: @subsection @code{nmono}
                    233: @findex nmono
                    234:
                    235: @table @t
                    236: @item nmono(@var{rat})
                    237: :: @var{rat} $B$NC19`<0$N9`?t(B.
                    238: @end table
                    239:
                    240: @table @var
                    241: @item return
                    242: $B<+A3?t(B
                    243: @item rat
                    244: $BM-M}<0(B
                    245: @end table
                    246:
                    247: @itemize @bullet
                    248: @item
                    249: $BB?9`<0$rE83+$7$?>uBV$G$N(B 0 $B$G$J$$78?t$r;}$DC19`<0$N9`?t$r5a$a$k(B.
                    250: @item
                    251: $BM-M}<0$N>l9g$O(B, $BJ,;R$HJ,Jl$N9`?t$NOB$,JV$5$l$k(B.
                    252: @item
                    253: $BH!?t7A<0(B (@xref{$BITDj85$N7?(B}) $B$O(B, $B0z?t$,2?$G$"$C$F$bC19`$H$_$J$5$l$k(B. (1 $B8D$NITDj85$HF1$8(B. )
                    254: @end itemize
                    255:
                    256: @example
                    257: [0] nmono((x+y)^10);
                    258: 11
                    259: [1] nmono((x+y)^10/(x+z)^10);
                    260: 22
                    261: [2] nmono(sin((x+y)^10));
                    262: 1
                    263: @end example
                    264:
                    265: @table @t
                    266: @item $B;2>H(B
                    267: @fref{vtype}.
                    268: @end table
                    269:
                    270: @node ord,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    271: @subsection @code{ord}
                    272: @findex ord
                    273:
                    274: @table @t
                    275: @item ord([@var{varlist}])
                    276: :: $BJQ?t=g=x$N@_Dj(B
                    277: @end table
                    278:
                    279: @table @var
                    280: @item return
                    281: $BJQ?t$N%j%9%H(B
                    282: @item varlist
                    283: $BJQ?t$N%j%9%H(B
                    284: @end table
                    285:
                    286: @itemize @bullet
                    287: @item
                    288: $B0z?t$,$"$k$H$-(B, $B0z?t$NJQ?t%j%9%H$r@hF,$K=P$7(B, $B;D$j$NJQ?t$,$=$N8e$K(B
                    289: $BB3$/$h$&$KJQ?t=g=x$r@_Dj$9$k(B. $B0z?t$N$"$k$J$7$K4X$o$i$:(B, @code{ord()}
                    290: $B$N=*N;;~$K$*$1$kJQ?t=g=x%j%9%H$rJV$9(B.
                    291:
                    292: @item
                    293: $B$3$NH!?t$K$h$kJQ?t=g=x$NJQ99$r9T$C$F$b(B, $B4{$K%W%m%0%i%`JQ?t$J$I$K(B
                    294: $BBeF~$5$l$F$$$k<0$NFbIt7A<0$O?7$7$$=g=x$K=>$C$F$OJQ99$5$l$J$$(B.
                    295: $B=>$C$F(B, $B$3$NH!?t$K$h$k=g=x$NJQ99$O(B, @b{Asir} $B$N5/F0D>8e(B,
                    296: $B$"$k$$$O(B, $B?7$?$JJQ?t$,8=$l$?;~E@$K9T$o$l$k(B
                    297: $B$Y$-$G$"$k(B. $B0[$J$kJQ?t=g=x$N$b$H$G@8@.$5$l$?<0$I$&$7$N1i;;(B
                    298: $B$,9T$o$l$?>l9g(B, $BM=4|$;$L7k2L$,@8$:$k$3$H$b$"$jF@$k(B.
                    299: @end itemize
                    300:
                    301: @example
                    302: [0] ord();
                    303: [x,y,z,u,v,w,p,q,r,s,t,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,_x,_y,_z,_u,_v,_w,_p,
                    304: _q,_r,_s,_t,_a,_b,_c,_d,_e,_f,_g,_h,_i,_j,_k,_l,_m,_n,_o,exp(_x),(_x)^(_y),
                    305: log(_x),(_x)^(_y-1),cos(_x),sin(_x),tan(_x),(-_x^2+1)^(-1/2),cosh(_x),sinh(_x),
                    306: tanh(_x),(_x^2+1)^(-1/2),(_x^2-1)^(-1/2)]
                    307: [1] ord([dx,dy,dz,a,b,c]);
                    308: [dx,dy,dz,a,b,c,x,y,z,u,v,w,p,q,r,s,t,d,e,f,g,h,i,j,k,l,m,n,o,_x,_y,_z,_u,_v,
                    309: _w,_p,_q,_r,_s,_t,_a,_b,_c,_d,_e,_f,_g,_h,_i,_j,_k,_l,_m,_n,_o,exp(_x),
                    310: (_x)^(_y),log(_x),(_x)^(_y-1),cos(_x),sin(_x),tan(_x),(-_x^2+1)^(-1/2),
                    311: cosh(_x),sinh(_x),tanh(_x),(_x^2+1)^(-1/2),(_x^2-1)^(-1/2)]
                    312: @end example
                    313:
                    314: @node sdiv sdivm srem sremm sqr sqrm,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    315: @subsection @code{sdiv}, @code{sdivm}, @code{srem}, @code{sremm}, @code{sqr}, @code{sqrm}
                    316: @findex sdiv
                    317: @findex sdivm
                    318: @findex srem
                    319: @findex sremm
                    320: @findex sqr
                    321: @findex sqrm
                    322:
                    323: @table @t
                    324: @item sdiv(@var{poly1},@var{poly2}[,@var{v}])
                    325: @itemx sdivm(@var{poly1},@var{poly2},@var{mod}[,@var{v}])
                    326: :: @var{poly1} $B$r(B @var{poly2} $B$G3d$k=|;;$,:G8e$^$G<B9T$G$-$k>l9g$K>&$r5a$a$k(B.
                    327: @item srem(@var{poly1},@var{poly2}[,@var{v}])
                    328: @item sremm(@var{poly1},@var{poly2},@var{mod}[,@var{v}])
                    329: :: @var{poly1} $B$r(B @var{poly2} $B$G3d$k=|;;$,:G8e$^$G<B9T$G$-$k>l9g$K>jM>$r5a$a$k(B.
                    330: @item sqr(@var{poly1},@var{poly2}[,@var{v}])
                    331: @item sqrm(@var{poly1},@var{poly2},@var{mod}[,@var{v}])
                    332: :: @var{poly1} $B$r(B @var{poly2} $B$G3d$k=|;;$,:G8e$^$G<B9T$G$-$k>l9g$K>&(B, $B>jM>$r(B
                    333: $B5a$a$k(B.
                    334: @end table
                    335:
                    336: @table @var
                    337: @item return
                    338: @code{sdiv()}, @code{sdivm()}, @code{srem()}, @code{sremm()} : $BB?9`<0(B, @code{sqr()}, @code{sqrm()} : @code{[$B>&(B,$B>jM>(B]} $B$J$k%j%9%H(B
                    339: @item poly1 poly2
                    340: $BB?9`<0(B
                    341: @item v
                    342: $BITDj85(B
                    343: @item mod
                    344: $BAG?t(B
                    345: @end table
                    346:
                    347: @itemize @bullet
                    348: @item
                    349: @var{poly1} $B$r(B @var{poly2} $B$N<gJQ?t(B @t{var}(@var{poly2})
                    350: ( $B0z?t(B @var{v} $B$,$"$k>l9g$K$O(B @var{v}) $B$K4X$9$kB?9`<0$H8+$F(B,
                    351: @var{poly2} $B$G(B, $B3d$j;;$r9T$&(B.
                    352: @item
                    353: @code{sdivm()}, @code{sremm()}, @code{sqrm()} $B$O(B GF(@var{mod}) $B>e$G7W;;$9$k(B.
                    354: @item
                    355: $BB?9`<0$N=|;;$O(B, $B<g78?t$I$&$7$N3d;;$K$h$jF@$i$l$?>&$H(B, $B<gJQ?t$NE,Ev$JQQ$N(B
                    356: $B@Q$r(B @var{poly2} $B$K3]$1$F(B, @var{poly1} $B$+$i0z$/$H$$$&A`:n$r(B
                    357: @var{poly1} $B$N<!?t$,(B @var{poly2} $B$N<!?t$h$j>.$5$/$J$k$^$G7+$jJV$7$F(B
                    358: $B9T$&(B. $B$3$NA`:n$,(B, $BB?9`<0$NHO0OFb$G9T$o$l$k$?$a$K$O(B, $B3F%9%F%C%W$K$*$$$F(B
                    359: $B<g78?t$I$&$7$N=|;;$,(B, $BB?9`<0$H$7$F$N@0=|$G$"$kI,MW$,$"$k(B. $B$3$l$,(B, $B!V=|;;(B
                    360: $B$,:G8e$^$G<B9T$G$-$k!W$3$H$N0UL#$G$"$k(B.
                    361: @item
                    362: $BE57?E*$J>l9g$H$7$F(B, @var{poly2} $B$N<g78?t$,(B, $BM-M}?t$G$"$k>l9g(B, $B$"$k$$$O(B,
                    363: @var{poly2} $B$,(B @var{poly1} $B$N0x;R$G$"$k$3$H$,$o$+$C$F$$$k>l9g$J$I(B
                    364: $B$,$"$k(B.
                    365: @item
                    366: @code{sqr()} $B$O>&$H>jM>$rF1;~$K5a$a$?$$;~$KMQ$$$k(B.
                    367: @item
                    368: $B@0?t=|;;$N>&(B, $B>jM>$O(B @code{idiv}, @code{irem} $B$rMQ$$$k(B.
                    369: @item
                    370: $B78?t$KBP$9$k>jM>1i;;$O(B @code{%} $B$rMQ$$$k(B.
                    371: @end itemize
                    372:
                    373: @example
                    374: [0] sdiv((x+y+z)^3,x^2+y+a);
                    375: x+3*y+3*z
                    376: [1] srem((x+y+z)^2,x^2+y+a);
                    377: (2*y+2*z)*x+y^2+(2*z-1)*y+z^2-a
                    378: [2] X=(x+y+z)*(x-y-z)^2;
                    379: x^3+(-y-z)*x^2+(-y^2-2*z*y-z^2)*x+y^3+3*z*y^2+3*z^2*y+z^3
                    380: [3] Y=(x+y+z)^2*(x-y-z);
                    381: x^3+(y+z)*x^2+(-y^2-2*z*y-z^2)*x-y^3-3*z*y^2-3*z^2*y-z^3
                    382: [4] G=gcd(X,Y);
                    383: x^2-y^2-2*z*y-z^2
                    384: [5] sqr(X,G);
                    385: [x-y-z,0]
                    386: [6] sqr(Y,G);
                    387: [x+y+z,0]
                    388: [7] sdiv(y*x^3+x+1,y*x+1);
                    389: divsp: cannot happen
                    390: return to toplevel
                    391: @end example
                    392:
                    393: @table @t
                    394: @item $B;2>H(B
                    395: @fref{idiv irem}, @fref{%}.
                    396: @end table
                    397:
                    398: @node tdiv,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    399: @subsection @code{tdiv}
                    400: @findex tdiv
                    401:
                    402: @table @t
                    403: @item tdiv(@var{poly1},@var{poly2})
                    404: :: @var{poly1} $B$,(B @var{poly2} $B$G3d$j@Z$l$k$+$I$&$+D4$Y$k(B.
                    405: @end table
                    406:
                    407: @table @var
                    408: @item return
                    409: $B3d$j@Z$l$k$J$i$P>&(B, $B3d$j@Z$l$J$1$l$P(B 0
                    410: @item poly1 poly2
                    411: $BB?9`<0(B
                    412: @end table
                    413:
                    414: @itemize @bullet
                    415: @item
                    416: @var{poly2} $B$,(B @var{poly1} $B$rB?9`<0$H$7$F3d$j@Z$k$+$I$&$+D4$Y$k(B.
                    417: @item
                    418: $B$"$kB?9`<0$,4{Ls0x;R$G$"$k$3$H$O$o$+$C$F$$$k$,(B, $B$=$N=EJ#EY$,$o$+$i$J$$(B
                    419: $B>l9g$K(B, @code{tdiv()} $B$r7+$jJV$78F$V$3$H$K$h$j=EJ#EY$,$o$+$k(B.
                    420: @end itemize
                    421:
                    422: @example
                    423: [11] Y=(x+y+z)^5*(x-y-z)^3;
                    424: x^8+(2*y+2*z)*x^7+(-2*y^2-4*z*y-2*z^2)*x^6+(-6*y^3-18*z*y^2-18*z^2*y-6*z^3)*x^5
                    425: +(6*y^5+30*z*y^4+60*z^2*y^3+60*z^3*y^2+30*z^4*y+6*z^5)*x^3+(2*y^6+12*z*y^5
                    426: +30*z^2*y^4+40*z^3*y^3+30*z^4*y^2+12*z^5*y+2*z^6)*x^2+(-2*y^7-14*z*y^6
                    427: -42*z^2*y^5-70*z^3*y^4-70*z^4*y^3-42*z^5*y^2-14*z^6*y-2*z^7)*x-y^8-8*z*y^7
                    428: -28*z^2*y^6-56*z^3*y^5-70*z^4*y^4-56*z^5*y^3-28*z^6*y^2-8*z^7*y-z^8
                    429: [12] for(I=0,F=x+y+z,T=Y; T=tdiv(T,F); I++);
                    430: [13] I;
                    431: 5
                    432: @end example
                    433:
                    434: @table @t
                    435: @item $B;2>H(B
                    436: @fref{sdiv sdivm srem sremm sqr sqrm}.
                    437: @end table
                    438:
                    439: @node %,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    440: @subsection @code{%}
                    441: @findex %
                    442:
                    443: @table @t
                    444: @item @var{poly} % @var{m}
                    445: :: $B@0?t$K$h$k>jM>(B
                    446: @end table
                    447:
                    448: @table @var
                    449: @item return
                    450: $B@0?t$^$?$OB?9`<0(B
                    451: @item poly
                    452: $B@0?t$^$?$O@0?t78?tB?9`<0(B
                    453: @item m
                    454: $B@0?t(B
                    455: @end table
                    456:
                    457: @itemize @bullet
                    458: @item
                    459: @var{poly} $B$N3F78?t$r(B @var{m} $B$G3d$C$?>jM>$GCV$-49$($?B?9`<0$rJV$9(B.
                    460: @item
                    461: $B7k2L$N78?t$OA4$F@5$N@0?t$H$J$k(B.
                    462: @item
                    463: @var{poly} $B$O@0?t$G$b$h$$(B. $B$3$N>l9g(B, $B7k2L$,@5$K@55,2=$5$l$k$3$H$r=|$1$P(B
                    464: @code{irem()} $B$HF1MM$KMQ$$$k$3$H$,$G$-$k(B.
                    465: @item
                    466: @var{poly} $B$N78?t(B, @var{m} $B$H$b@0?t$G$"$kI,MW$,$"$k$,(B, $B%A%'%C%/$O9T$J$o$l$J$$(B.
                    467: @end itemize
                    468:
                    469: @example
                    470: [0] (x+2)^5 % 3;
                    471: x^5+x^4+x^3+2*x^2+2*x+2
                    472: [1] (x-2)^5 % 3;
                    473: x^5+2*x^4+x^3+x^2+2*x+1
                    474: [2] (-5) % 4;
                    475: 3
                    476: [3] irem(-5,4);
                    477: -1
                    478: @end example
                    479:
                    480: @table @t
                    481: @item $B;2>H(B
                    482: @fref{idiv irem}.
                    483: @end table
                    484:
                    485: @node subst psubst,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    486: @subsection @code{subst}, @code{psubst}
                    487: @findex subst
                    488: @findex psubst
                    489:
                    490: @table @t
                    491: @item subst(@var{rat}[,@var{varn},@var{ratn}]*)
                    492: @item psubst(@var{rat}[,@var{var},@var{rat}]*)
                    493: :: @var{rat} $B$N(B @var{varn} $B$K(B @var{ratn} $B$rBeF~(B
                    494: (@var{n=1,2},... $B$G:8$+$i1&$K=g<!BeF~$9$k(B).
                    495: @end table
                    496:
                    497: @table @var
                    498: @item return
                    499: $BM-M}<0(B
                    500: @item rat,ratn
                    501: $BM-M}<0(B
                    502: @item varn
                    503: $BITDj85(B
                    504: @end table
                    505:
                    506: @itemize @bullet
                    507: @item
                    508: $BM-M}<0$NFCDj$NITDj85$K(B, $BDj?t$"$k$$$OB?9`<0(B, $BM-M}<0$J$I$rBeF~$9$k$N$KMQ$$$k(B.
                    509: @item
                    510: @t{subst}(@var{rat},@var{var1},@var{rat1},@var{var2},@var{rat2},...) $B$O(B,
                    511: @t{subst}(@t{subst}(@var{rat},@var{var1},@var{rat1}),@var{var2},@var{rat2},...)
                    512: $B$HF1$80UL#$G$"$k(B.
                    513: @item
                    514: $BF~NO$N:8B&$+$i=g$KBeF~$r7+$jJV$9$?$a$K(B, $BF~NO$N=g$K$h$C$F7k2L$,JQ$o$k$3$H$,$"$k(B.
                    515: @item
                    516: @code{subst()} $B$O(B, @code{sin()} $B$J$I$NH!?t$N0z?t$KBP$7$F$bBeF~$r9T$&(B.
                    517: @code{psubst()} $B$O(B, $B$3$N$h$&$JH!?t$r0l$D$NFHN)$7$?ITDj85$H8+$J$7$F(B, $B$=(B
                    518: $B$N0z?t$K$OBeF~$O9T$o$J$$(B. (partial substitution $B$N$D$b$j(B)
                    519: @item
                    520: @b{Asir} $B$G$O(B, $BM-M}<0$NLsJ,$O<+F0E*$K$O9T$o$J$$$?$a(B,
                    521: $BM-M}<0$NBeF~$O(B, $B;W$o$L7W;;;~4V$NA}Bg$r0z$-5/$3$9>l9g$,$"$k(B.
                    522: $BM-M}<0$rBeF~$9$k>l9g$K$O(B, $BLdBj$K1~$8$?FH<+$NH!?t$r=q$$$F(B,
                    523: $B$J$k$Y$/J,Jl(B, $BJ,;R$,Bg$-$/$J$i$J$$$h$&$KG[N8$9$k$3$H$b$7$P$7$PI,MW$H$J$k(B.
                    524: @item
                    525: $BJ,?t$rBeF~$9$k>l9g$bF1MM$G$"$k(B.
                    526: @end itemize
                    527:
                    528: @example
                    529: [0] subst(x^3-3*y*x^2+3*y^2*x-y^3,y,2);
                    530: x^3-6*x^2+12*x-8
                    531: [1] subst(@@@@,x,-1);
                    532: -27
                    533: [2] subst(x^3-3*y*x^2+3*y^2*x-y^3,y,2,x,-1);
                    534: -27
                    535: [3] subst(x*y^3,x,y,y,x);
                    536: x^4
                    537: [4] subst(x*y^3,y,x,x,y);
                    538: y^4
                    539: [5] subst(x*y^3,x,t,y,x,t,y);
                    540: y*x^3
                    541: [6] subst(x*sin(x),x,t);
                    542: sint(t)*t
                    543: [7] psubst(x*sin(x),x,t);
                    544: sin(x)*t
                    545: @end example
                    546:
                    547: @node diff,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    548: @subsection @code{diff}
                    549: @findex diff
                    550:
                    551: @table @t
                    552: @item diff(@var{rat}[,@var{varn}]*)
                    553: @item diff(@var{rat},@var{varlist})
                    554: :: @var{rat} $B$r(B @var{varn} $B$"$k$$$O(B @var{varlist} $B$NCf$NJQ?t$G=g<!HyJ,$9$k(B.
                    555: @end table
                    556:
                    557: @table @var
                    558: @item return
                    559: $B<0(B
                    560: @item rat
                    561: $BM-M}<0(B ($B=iEyH!?t$r4^$s$G$b$h$$(B)
                    562: @item varn
                    563: $BITDj85(B
                    564: @item varlist
                    565: $BITDj85$N%j%9%H(B
                    566: @end table
                    567:
                    568: @itemize @bullet
                    569: @item
                    570: $BM?$($i$l$?=iEyH!?t$r(B @var{varn} $B$"$k$$$O(B @var{varlist} $B$NCf$NJQ?t$G(B
                    571: $B=g<!HyJ,$9$k(B.
                    572: @item
                    573: $B:8B&$NITDj85$h$j(B, $B=g$KHyJ,$7$F$$$/(B. $B$D$^$j(B, @t{diff}(@var{rat},@t{x,y}) $B$O(B,
                    574: @t{diff}(@t{diff}(@var{rat},@t{x}),@t{y}) $B$HF1$8$G$"$k(B.
                    575: @end itemize
                    576:
                    577: @example
                    578: [0] diff((x+2*y)^2,x);
                    579: 2*x+4*y
                    580: [1] diff((x+2*y)^2,x,y);
                    581: 4
                    582: [2] diff(x/sin(log(x)+1),x);
                    583: (sin(log(x)+1)-cos(log(x)+1))/(sin(log(x)+1)^2)
                    584: [3] diff(sin(x),[x,x,x,x]);
                    585: sin(x)
                    586: @end example
                    587:
                    588: @node res,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    589: @subsection @code{res}
                    590: @findex res
                    591:
                    592: @table @t
                    593: @item res(@var{var},@var{poly1},@var{poly2}[,@var{mod}])
                    594: :: @var{var} $B$K4X$9$k(B @var{poly1} $B$H(B @var{poly2} $B$N=*7k<0(B.
                    595: @end table
                    596:
                    597: @table @var
                    598: @item return
                    599: $BB?9`<0(B
                    600: @item var
                    601: $BITDj85(B
                    602: @item poly1,poly2
                    603: $BB?9`<0(B
                    604: @item mod
                    605: $BAG?t(B
                    606: @end table
                    607:
                    608: @itemize @bullet
                    609: @item
                    610: $BFs$D$NB?9`<0(B @var{poly1} $B$H(B @var{poly2} $B$N(B, $BJQ?t(B @var{var} $B$K4X$9$k(B
                    611: $B=*7k<0$r5a$a$k(B.
                    612: @item
                    613: $BItJ,=*7k<0%"%k%4%j%:%`$K$h$k(B.
                    614: @item
                    615: $B0z?t(B @var{mod} $B$,$"$k;~(B, GF(@var{mod}) $B>e$G$N7W;;$r9T$&(B.
                    616: @end itemize
                    617:
                    618: @example
                    619: [0] res(t,(t^3+1)*x+1,(t^3+1)*y+t);
                    620: -x^3-x^2-y^3
                    621: @end example
                    622:
                    623: @node fctr sqfr,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    624: @subsection @code{fctr}, @code{sqfr}
                    625: @findex fctr
                    626: @findex sqfr
                    627:
                    628: @table @t
                    629: @item fctr(@var{poly})
                    630: :: @var{poly} $B$r4{Ls0x;R$KJ,2r$9$k(B.
                    631: @item sqfr(@var{poly})
                    632: :: @var{poly} $B$rL5J?J}J,2r$9$k(B.
                    633: @end table
                    634:
                    635: @table @var
                    636: @item return
                    637: $B%j%9%H(B
                    638: @item poly
                    639: $BM-M}?t78?t$NB?9`<0(B
                    640: @end table
                    641:
                    642: @itemize @bullet
                    643: @item
                    644: $BM-M}?t78?t$NB?9`<0(B @var{poly} $B$r0x?tJ,2r$9$k(B. @code{fctr()} $B$O4{Ls0x;RJ,2r(B,
                    645: @code{sqfr()} $B$OL5J?J}0x;RJ,2r(B.
                    646: @item
                    647: $B7k2L$O(B [[@b{$B?t78?t(B},1],[@b{$B0x;R(B},@b{$B=EJ#EY(B}],...] $B$J$k%j%9%H(B.
                    648: @item
                    649: @b{$B?t78?t(B} $B$H(B $BA4$F$N(B @b{$B0x;R(B}^@b{$B=EJ#EY(B} $B$N@Q$,(B @var{poly} $B$HEy$7$$(B.
                    650: @item
                    651: @b{$B?t78?t(B} $B$O(B, (@var{poly}/@b{$B?t78?t(B}) $B$,(B, $B@0?t78?t$G(B, $B78?t$N(B GCD $B$,(B 1 $B$H$J$k(B
                    652: $B$h$&$JB?9`<0$K$J$k$h$&$KA*$P$l$F$$$k(B. (@code{ptozp()} $B;2>H(B)
                    653: @end itemize
                    654:
                    655: @example
                    656: [0] fctr(x^10-1);
                    657: [[1,1],[x-1,1],[x+1,1],[x^4+x^3+x^2+x+1,1],[x^4-x^3+x^2-x+1,1]]
                    658: [1] fctr(x^3+y^3+(z/3)^3-x*y*z);
                    659: [[1/27,1],[9*x^2+(-9*y-3*z)*x+9*y^2-3*z*y+z^2,1],[3*x+3*y+z,1]]
                    660: [2] A=(a+b+c+d)^2;
                    661: a^2+(2*b+2*c+2*d)*a+b^2+(2*c+2*d)*b+c^2+2*d*c+d^2
                    662: [3] fctr(A);
                    663: [[1,1],[a+b+c+d,2]]
                    664: [4] A=(x+1)*(x^2-y^2)^2;
                    665: x^5+x^4-2*y^2*x^3-2*y^2*x^2+y^4*x+y^4
                    666: [5] sqfr(A);
                    667: [[1,1],[x+1,1],[-x^2+y^2,2]]
                    668: [6] fctr(A);
                    669: [[1,1],[x+1,1],[-x-y,2],[x-y,2]]
                    670: @end example
                    671:
                    672: @table @t
                    673: @item $B;2>H(B
                    674: @fref{ufctrhint}.
                    675: @end table
                    676:
                    677: @node ufctrhint,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    678: @subsection @code{ufctrhint}
                    679: @findex ufctrhint
                    680:
                    681: @table @t
                    682: @item ufctrhint(@var{poly},@var{hint})
                    683: :: $B<!?t>pJs$rMQ$$$?(B 1 $BJQ?tB?9`<0$N0x?tJ,2r(B
                    684: @end table
                    685:
                    686: @table @var
                    687: @item return
                    688: $B%j%9%H(B
                    689: @item poly
                    690: $BM-M}?t78?t$N(B 1 $BJQ?tB?9`<0(B
                    691: @item hint
                    692: $B<+A3?t(B
                    693: @end table
                    694:
                    695: @itemize @bullet
                    696: @item
                    697: $B3F4{Ls0x;R$N<!?t$,(B @var{hint} $B$NG\?t$G$"$k$3$H$,$o$+$C$F$$$k>l9g$K(B
                    698: @var{poly} $B$N4{Ls0x;RJ,2r$r(B @code{fctr()} $B$h$j8zN(NI$/9T$&(B.
                    699: @var{poly} $B$,(B, @var{d} $B<!$N3HBgBN>e$K$*$1$k(B
                    700: $B$"$kB?9`<0$N%N%k%`(B (@xref{$BBe?tE*?t$K4X$9$k1i;;(B}) $B$GL5J?J}$G$"$k>l9g(B,
                    701: $B3F4{Ls0x;R$N<!?t$O(B @var{d} $B$NG\?t$H$J$k(B. $B$3$N$h$&$J>l9g$K(B
                    702: $BMQ$$$i$l$k(B.
                    703: @end itemize
                    704:
                    705: @example
                    706: [10] A=t^9-15*t^6-87*t^3-125;
                    707: t^9-15*t^6-87*t^3-125
                    708: 0msec
                    709: [11] N=res(t,subst(A,t,x-2*t),A);
                    710: -x^81+1215*x^78-567405*x^75+139519665*x^72-19360343142*x^69+1720634125410*x^66
                    711: -88249977024390*x^63-4856095669551930*x^60+1999385245240571421*x^57
                    712: -15579689952590251515*x^54+15956967531741971462865*x^51
                    713: ...
                    714: +140395588720353973535526123612661444550659875*x^6
                    715: +10122324287343155430042768923500799484375*x^3
                    716: +139262743444407310133459021182733314453125
                    717: 980msec + gc : 250msec
                    718: [12] sqfr(N);
                    719: [[-1,1],[x^81-1215*x^78+567405*x^75-139519665*x^72+19360343142*x^69
                    720: -1720634125410*x^66+88249977024390*x^63+4856095669551930*x^60
                    721: -1999385245240571421*x^57+15579689952590251515*x^54
                    722: ...
                    723: -10122324287343155430042768923500799484375*x^3
                    724: -139262743444407310133459021182733314453125,1]]
                    725: 20msec
                    726: [13] fctr(N);
                    727: [[-1,1],[x^9-405*x^6-63423*x^3-2460375,1],
                    728: [x^18-486*x^15+98739*x^12-9316620*x^9+945468531*x^6-12368049246*x^3
                    729: +296607516309,1],[x^18-8667*x^12+19842651*x^6+19683,1],
                    730: [x^18-324*x^15+44469*x^12-1180980*x^9+427455711*x^6+2793253896*x^3+31524548679,1],
                    731: [x^18+10773*x^12+2784051*x^6+307546875,1]]
                    732: 167.050sec + gc : 1.890sec
                    733: [14] ufctrhint(N,9);
                    734: [[-1,1],[x^9-405*x^6-63423*x^3-2460375,1],
                    735: [x^18-486*x^15+98739*x^12-9316620*x^9+945468531*x^6-12368049246*x^3
                    736: +296607516309,1],[x^18-8667*x^12+19842651*x^6+19683,1],
                    737: [x^18-324*x^15+44469*x^12-1180980*x^9+427455711*x^6+2793253896*x^3+31524548679,1],
                    738: [x^18+10773*x^12+2784051*x^6+307546875,1]]
                    739: 119.340sec + gc : 1.300sec
                    740: @end example
                    741:
                    742: @table @t
                    743: @item $B;2>H(B
                    744: @fref{fctr sqfr}.
                    745: @end table
                    746:
                    747: @node modfctr,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    748: @subsection @code{modfctr}
                    749: @findex modfctr
                    750:
                    751: @table @t
                    752: @item modfctr(@var{poly},@var{mod})
                    753: :: $BM-8BBN>e$G$N(B 1 $BJQ?tB?9`<0$N0x?tJ,2r(B
                    754: @end table
                    755:
                    756: @table @var
                    757: @item return
                    758: $B%j%9%H(B
                    759: @item poly
                    760: $B@0?t78?t$N(B 1 $BJQ?tB?9`<0(B
                    761: @item mod
                    762: $B<+A3?t(B
                    763: @end table
                    764:
                    765: @itemize @bullet
                    766: @item
                    767: 2^31 $BL$K~$N<+A3?t(B @var{mod} $B$rI8?t$H$9$kAGBN>e$G0lJQ?tB?9`<0(B
                    768: @var{poly} $B$r4{Ls0x;R$KJ,2r$9$k(B.
                    769: @item
                    770: $B7k2L$O(B [[@b{$B?t78?t(B},1],[@b{$B0x;R(B},@b{$B=EJ#EY(B}],...] $B$J$k%j%9%H(B.
                    771: @item
                    772: @b{$B?t78?t(B} $B$H(B $BA4$F$N(B @b{$B0x;R(B}^@b{$B=EJ#EY(B} $B$N@Q$,(B @var{poly} $B$HEy$7$$(B.
                    773: @end itemize
                    774:
                    775: @example
                    776: [0] modfctr(x^10+x^2+1,2147483647);
                    777: [[1,1],[x+1513477736,1],[x+2055628767,1],[x+91854880,1],
                    778: [x+634005911,1],[x+1513477735,1],[x+634005912,1],
                    779: [x^4+1759639395*x^2+2045307031,1]]
                    780: @end example
                    781:
                    782: @table @t
                    783: @item $B;2>H(B
                    784: @fref{fctr sqfr}.
                    785: @end table
                    786:
                    787: @node ptozp,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    788: @subsection @code{ptozp}
                    789: @findex ptozp
                    790:
                    791: @table @t
                    792: @item ptozp(@var{poly})
                    793: :: @var{poly} $B$rM-M}?tG\$7$F@0?t78?tB?9`<0$K$9$k(B.
                    794: @end table
                    795:
                    796: @table @var
                    797: @item return
                    798: $BB?9`<0(B
                    799: @item poly
                    800: $BB?9`<0(B
                    801: @end table
                    802:
                    803: @itemize @bullet
                    804: @item
                    805: $BM?$($i$l$?B?9`<0(B @var{poly} $B$KE,Ev$JM-M}?t$r3]$1$F(B, $B@0?t78?t$+$D(B
                    806: $B78?t$N(B GCD $B$,(B 1 $B$K$J$k$h$&$K$9$k(B.
                    807: @item
                    808: $BJ,?t$N;MB'1i;;$O(B, $B@0?t$N1i;;$KHf3S$7$FCY$$$?$a(B, $B<o!9$NB?9`<01i;;(B
                    809: $B$NA0$K(B, $BB?9`<0$r@0?t78?t$K$7$F$*$/$3$H$,K>$^$7$$(B.
                    810: @item
                    811: $BM-M}<0$rLsJ,$9$k(B @code{red()} $B$GJ,?t78?tM-M}<0$rLsJ,$7$F$b(B,
                    812: $BJ,;RB?9`<0$N78?t$OM-M}?t$N$^$^$G$"$j(B, $BM-M}<0$NJ,;R$r5a$a$k(B
                    813: @code{nm()} $B$G$O(B, $BJ,?t78?tB?9`<0$O(B, $BJ,?t78?t$N$^$^$N7A$G=PNO$5$l$k$?$a(B,
                    814: $BD>$A$K@0?t78?tB?9`<0$rF@$k;v$O=PMh$J$$(B.
                    815: @end itemize
                    816:
                    817: @example
                    818: [0] ptozp(2*x+5/3);
                    819: 6*x+5
                    820: [1] nm(2*x+5/3);
                    821: 2*x+5/3
                    822: @end example
                    823:
                    824: @table @t
                    825: @item $B;2>H(B
                    826: @fref{nm dn}.
                    827: @end table
                    828:
                    829: @node prim cont,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    830: @subsection @code{prim}, @code{cont}
                    831: @findex prim
                    832:
                    833: @table @t
                    834: @item prim(@var{poly}[,@var{v}])
                    835: :: @var{poly} $B$N86;OE*ItJ,(B (primitive part).
                    836: @item cont(@var{poly}[,@var{v}])
                    837: :: @var{poly} $B$NMFNL(B (content).
                    838: @end table
                    839:
                    840: @table @var
                    841: @item return poly
                    842: $BM-M}?t78?tB?9`<0(B
                    843: @item v
                    844: $BITDj85(B
                    845: @end table
                    846:
                    847: @itemize @bullet
                    848: @item
                    849: @var{poly} $B$N<gJQ?t(B ($B0z?t(B @var{v} $B$,$"$k>l9g$K$O(B @var{v})
                    850: $B$K4X$9$k86;OE*ItJ,(B, $BMFNL$r5a$a$k(B.
                    851: @end itemize
                    852:
                    853: @example
                    854: [0] E=(y-z)*(x+y)*(x-z)*(2*x-y);
                    855: (2*y-2*z)*x^3+(y^2-3*z*y+2*z^2)*x^2+(-y^3+z^2*y)*x+z*y^3-z^2*y^2
                    856: [1] prim(E);
                    857: 2*x^3+(y-2*z)*x^2+(-y^2-z*y)*x+z*y^2
                    858: [2] cont(E);
                    859: y-z
                    860: [3] prim(E,z);
                    861: (y-z)*x-z*y+z^2
                    862: @end example
                    863:
                    864: @table @t
                    865: @item $B;2>H(B
                    866: @fref{var}, @fref{ord}.
                    867: @end table
                    868:
                    869: @node gcd gcdz,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    870: @subsection @code{gcd}, @code{gcdz}
                    871: @findex gcd
                    872:
                    873: @table @t
                    874: @item gcd(@var{poly1},@var{poly2}[,@var{mod}])
                    875: @item gcdz(@var{poly1},@var{poly2})
                    876: :: @var{poly1} $B$H(B @var{poly2} $B$N(B gcd.
                    877: @end table
                    878:
                    879: @table @var
                    880: @item return
                    881: $BB?9`<0(B
                    882: @item poly1,poly2
                    883: $BB?9`<0(B
                    884: @item mod
                    885: $BAG?t(B
                    886: @end table
                    887:
                    888: @itemize @bullet
                    889: @item
                    890: $BFs$D$NB?9`<0$N:GBg8xLs<0(B (GCD) $B$r5a$a$k(B.
                    891: @item
                    892: @code{gcd()} $B$OM-M}?tBN>e$NB?9`<0$H$7$F$N(B GCD $B$rJV$9(B.
                    893: $B$9$J$o$A(B, $B7k2L$O@0?t78?t$G(B, $B$+$D78?t$N(B GCD
                    894: $B$,(B 1 $B$K$J$k$h$&$JB?9`<0(B, $B$^$?$O(B, $B8_$$$KAG$N>l9g$O(B 1 $B$rJV$9(B.
                    895: @item
                    896: @code{gcdz()} $B$O(B @var{poly1}, @var{poly2} $B$H$b$K@0?t78?t$N>l9g$K(B,
                    897: $B@0?t4D>e$NB?9`<0$H$7$F$N(B GCD $B$rJV$9(B.
                    898: $B$9$J$o$A(B, @code{gcd()} $B$NCM$K(B, $B78?tA4BN$N@0?t(B GCD$B$NCM$r3]$1$?$b$N$rJV$9(B.
                    899: @item
                    900: $B0z?t(B @var{mod} $B$,$"$k;~(B, @code{gcd()} $B$O(B GF(@var{mod}) $B>e$G$N(B GCD $B$rJV$9(B.
                    901: @item
                    902: @code{gcd()}, @code{gcdz()} Extended Zassenhaus $B%"%k%4%j%:%`$K$h$k(B.
                    903: $BM-8BBN>e$N(B GCD $B$O(B PRS $B%"%k%4%j%:%`$K$h$C$F$$$k$?$a(B, $BBg$-$JLdBj(B,
                    904: GCD $B$,(B 1 $B$N>l9g$J$I$K$*$$$F8zN($,0-$$(B.
                    905: @end itemize
                    906:
                    907: @example
                    908: [0] gcd(12*(x^2+2*x+1)^2,18*(x^2+(y+1)*x+y)^3);
                    909: x^3+3*x^2+3*x+1
                    910: [1] gcdz(12*(x^2+2*x+1)^2,18*(x^2+(y+1)*x+y)^3);
                    911: 6*x^3+18*x^2+18*x+6
                    912: [2] gcd((x+y)*(x-y)^2,(x+y)^2*(x-y));
                    913: x^2-y^2
                    914: [3] gcd((x+y)*(x-y)^2,(x+y)^2*(x-y),2);
                    915: x^3+y*x^2+y^2*x+y^3
                    916: @end example
                    917:
                    918: @table @t
                    919: @item $B;2>H(B
                    920: @fref{igcd igcdcntl}.
                    921: @end table
                    922:
                    923: @node red,,, $BB?9`<0$*$h$SM-M}<0$N1i;;(B
                    924: @subsection @code{red}
                    925: @findex red
                    926:
                    927: @table @t
                    928: @item red(@var{rat})
                    929: :: @var{rat} $B$rLsJ,$7$?$b$N(B.
                    930: @end table
                    931:
                    932: @table @var
                    933: @item return
                    934: $BM-M}<0(B
                    935: @item rat
                    936: $BM-M}<0(B
                    937: @end table
                    938:
                    939: @itemize @bullet
                    940: @item
                    941: @b{Asir} $B$OM-M}?t$NLsJ,$r>o$K<+F0E*$K9T$&(B.
                    942: $B$7$+$7(B, $BM-M}<0$K$D$$$F$ODLJ,$O9T$&$,(B,
                    943: $BLsJ,$O%f!<%6!<$,;XDj$7$J$$8B$j9T$o$J$$(B.
                    944: $B$3$NLsJ,$r9T$&%3%^%s%I$,(B @t{red} $B$G$"$k(B.
                    945: @item
                    946: EZGCD $B$K$h$j(B @var{rat} $B$NJ,;R(B, $BJ,Jl$rLsJ,$9$k(B.
                    947: @item
                    948: $B=PNO$5$l$kM-M}<0$NJ,Jl$NB?9`<0$O(B, $B3F78?t$N(B GCD $B$,(B 1 $B$N(B
                    949: $B@0?t78?tB?9`<0$G$"$k(B.
                    950: $BJ,;R$K$D$$$F$O@0?t78?tB?9`<0$H$J$k$H$O8B$i$J$$(B.
                    951: @item
                    952: GCD $B$OBgJQ=E$$1i;;$J$N$G(B, $BB>$NJ}K!$G=|$1$k6&DL0x;R$O2DG=$J8B$j=|$/$N$,(B
                    953: $BK>$^$7$$(B. $B$^$?(B, $BJ,Jl(B, $BJ,;R$,Bg$-$/$J$C$F$+$i$N$3$NH!?t$N8F$S=P$7$O(B,
                    954: $BHs>o$K;~4V$,3]$+$k>l9g$,B?$$(B. $BM-M}<01i;;$r9T$&>l9g$O(B, $B$"$kDxEY(B
                    955: $BIQHK$K(B, $BLsJ,$r9T$&I,MW$,$"$k(B.
                    956: @end itemize
                    957:
                    958: @example
                    959: [0] (x^3-1)/(x-1);
                    960: (x^3-1)/(x-1)
                    961: [1] red((x^3-1)/(x-1));
                    962: x^2+x+1
                    963: [2] red((x^3+y^3+z^3-3*x*y*z)/(x+y+z));
                    964: x^2+(-y-z)*x+y^2-z*y+z^2
                    965: [3] red((3*x*y)/(12*x^2+21*y^3*x));
                    966: (y)/(4*x+7*y^3)
                    967: [4] red((3/4*x^2+5/6*x)/(2*y*x+4/3*x));
                    968: (9/8*x+5/4)/(3*y+2)
                    969: @end example
                    970:
                    971: @table @t
                    972: @item $B;2>H(B
                    973: @fref{nm dn}, @fref{gcd gcdz}, @fref{ptozp}.
                    974: @end table
                    975:

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>