=================================================================== RCS file: /home/cvs/OpenXM/src/asir-doc/parts/builtin/upoly.texi,v retrieving revision 1.2 retrieving revision 1.3 diff -u -p -r1.2 -r1.3 --- OpenXM/src/asir-doc/parts/builtin/upoly.texi 1999/12/21 02:47:34 1.2 +++ OpenXM/src/asir-doc/parts/builtin/upoly.texi 2003/04/19 15:44:59 1.3 @@ -1,4 +1,4 @@ -@comment $OpenXM$ +@comment $OpenXM: OpenXM/src/asir-doc/parts/builtin/upoly.texi,v 1.2 1999/12/21 02:47:34 noro Exp $ \BJP @node 一変数多項式の演算,,, 組み込み函数 @section 一変数多項式の演算 @@ -112,7 +112,7 @@ cannot take polynomials over GF(2^n) as their inputs. @item @code{umul()}, @code{umul_ff()} produce @var{p1*p2}. @code{usquare()}, @code{usquare_ff()} produce @var{p1^2}. -@code{utmul()}, @code{utmul_ff()} produce @var{p1*p2 mod v^(d+1)}, +@code{utmul()}, @code{utmul_ff()} produce @var{p1*p2 mod} @var{v}^(@var{d}+1), where @var{v} is the variable of @var{p1}, @var{p2}. @item If the degrees of the inputs are less than or equal to the @@ -315,24 +315,24 @@ See the description of each function for details. @itemize @bullet \BJP @item -@var{p} の変数を x とする. このとき @var{p} = @var{p1}+x^(d+1)@var{p2} +@var{p} の変数を x とする. このとき @var{p} = @var{p1}+x^(@var{d}+1)@var{p2} (@var{p1} の次数は @var{d} 以下) と分解できる. @code{utrunc()} は @var{p1} を返し, @code{udecomp()} は [@var{p1},@var{p2}] を返す. @item -@var{p} の次数を @var{e} とし, @var{i} 次の係数を @var{p[i]} とすれば, -@code{ureverse()} は @var{p[e]}+@var{p[e-1]}x+... を返す. +@var{p} の次数を @var{e} とし, @var{i} 次の係数を @var{p}[@var{i}] とすれば, +@code{ureverse()} は @var{p}[@var{e}]+@var{p}[@var{e}-1]x+... を返す. \E \BEG @item Let @var{x} be the variable of @var{p}. Then @var{p} can be decomposed -as @var{p} = @var{p1}+x^(d+1)@var{p2}, where the degree of @var{p1} +as @var{p} = @var{p1}+x^(@var{d}+1)@var{p2}, where the degree of @var{p1} is less than or equal to @var{d}. Under the decomposition, @code{utrunc()} returns @var{p1} and @code{udecomp()} returns [@var{p1},@var{p2}]. @item -Let @var{e} be the degree of @var{p} and @var{p[i]} the coefficient +Let @var{e} be the degree of @var{p} and @var{p}[@var{i}] the coefficient of @var{p} at degree @var{i}. Then -@code{ureverse()} returns @var{p[e]}+@var{p[e-1]}x+.... +@code{ureverse()} returns @var{p}[@var{e}]+@var{p}[@var{e}-1]x+.... \E @end itemize @@ -394,7 +394,7 @@ of @var{p} at degree @var{i}. Then For a polynomial @var{p} with a non zero constant term, @code{uinv_as_power_series(@var{p},@var{d})} computes a polynomial @var{r} whose degree is at most @var{d} -such that @var{p*r = 1 mod x^(d+1)}, where @var{x} is the variable +such that @var{p*r = 1 mod} x^(@var{d}+1), where @var{x} is the variable of @var{p}. @item Let @var{e} be the degree of @var{p}. @@ -452,7 +452,7 @@ x^10+x^9 @item return \JP 一変数多項式 \EG univariate polynomial -@item p1,p2,inv +@item p1 p2 inv \JP 一変数多項式 \EG univariate polynomial @end table