Annotation of OpenXM/src/asir-doc/parts/builtin/upoly.texi, Revision 1.1.1.1
1.1 noro 1: @node $B0lJQ?tB?9`<0$N1i;;(B,,, $BAH$_9~$_H!?t(B
2: @section $B0lJQ?tB?9`<0$N1i;;(B
3:
4: @menu
5: * umul umul_ff usquare usquare_ff utmul utmul_ff::
6: * kmul ksquare ktmul::
7: * utrunc udecomp ureverse::
8: * set_upkara set_uptkara set_upfft::
9: * uinv_as_power_series ureverse_inv_as_power_series::
10: * udiv urem urembymul urembymul_precomp ugcd::
11: @end menu
12:
13: @node umul umul_ff usquare usquare_ff utmul utmul_ff,,, $B0lJQ?tB?9`<0$N1i;;(B
14: @subsection @code{umul}, @code{umul_ff}, @code{usquare}, @code{usquare_ff}, @code{utmul}, @code{utmul_ff}
15: @findex umul
16: @findex umul_ff
17: @findex usquare
18: @findex usquare_ff
19: @findex utmul
20: @findex utmul_ff
21:
22: @table @t
23: @item umul(@var{p1},@var{p2})
24: @itemx umul_ff(@var{p1},@var{p2})
25: :: $B0lJQ?tB?9`<0$N9bB.>h;;(B
26: @item usquare(@var{p1})
27: @itemx usquare_ff(@var{p1})
28: :: $B0lJQ?tB?9`<0$N9bB.(B 2 $B>h;;(B
29: @item utmul(@var{p1},@var{p2},@var{d})
30: @itemx utmul_ff(@var{p1},@var{p2},@var{d})
31: :: $B0lJQ?tB?9`<0$N9bB.>h;;(B ($BBG$A@Z$j<!?t;XDj(B)
32: @end table
33:
34: @table @var
35: @item return
36: $B0lJQ?tB?9`<0(B
37: @item p1 p2
38: $B0lJQ?tB?9`<0(B
39: @item d
40: $BHsIi@0?t(B
41: @end table
42:
43: @itemize @bullet
44: @item
45: $B0lJQ?tB?9`<0$N>h;;$r(B, $B<!?t$K1~$8$F7h$^$k%"%k%4%j%:%`$rMQ$$$F(B
46: $B9bB.$K9T$&(B.
47: @item
48: @code{umul()}, @code{usquare()}, @code{utmul()} $B$O(B
49: $B78?t$r@0?t$H8+$J$7$F(B, $B@0?t78?t$NB?9`<0$H$7$F@Q$r5a$a$k(B.
50: $B78?t$,M-8BBN(B GF(p) $B$N85$N>l9g$K$O(B, $B78?t$O(B 0 $B0J>e(B p $BL$K~$N@0?t$H8+$J$5$l$k(B.
51: @item
52: @code{umul_ff()}, @code{usquare_ff()}, @code{utmul_ff()} $B$O(B,
53: $B78?t$rM-8BBN$N85$H8+$J$7$F(B, $BM-8BBN>e$NB?9`<0$H$7$F(B
54: $B@Q$r5a$a$k(B. $B$?$@$7(B, $B0z?t$,A4$/M-8BBN$N85$r4^$^$J$$>l9g$K$O(B,
55: $B@0?t78?t$NB?9`<0$rJV$9>l9g$b$"$k$N$G(B, $B$3$l$i$r8F$S=P$7$?7k2L(B
56: $B$,M-8BBN78?t$G$"$k$3$H$rJ]>Z$9$k$?$a$K$O(B
57: $B$"$i$+$8$a(B @code{simp_ff()} $B$G78?t$rM-8BBN$N85$KJQ49$7$F$*$/$H$h$$(B.
58: @item
59: @code{umul_ff()}, @code{usquare_ff()}, @code{utmul_ff()} $B$O(B,
60: GF(2^n) $B78?t$NB?9`<0$r0z?t$K<h$l$J$$(B.
61: @item
62: @code{umul()}, @code{umul_ff()} $B$N7k2L$O(B @var{p1}, @var{p2} $B$N@Q(B,
63: @code{usquare()}, @code{usquare_ff()} $B$N7k2L$O(B @var{p1} $B$N(B 2 $B>h(B,
64: @code{utmul()}, @code{utmul_ff()} $B$N7k2L$O(B @var{p1}, @var{p2} $B$N@Q(B
65: $B$N(B, @var{d} $B<!0J2<$NItJ,$H$J$k(B.
66: @item
67: $B$$$:$l$b(B, @code{set_upkara()} (@code{utmul}, @code{utmul_ff} $B$K$D$$$F$O(B
68: @code{set_uptkara()}) $B$GJV$5$l$kCM0J2<$N<!?t$KBP$7$F$ODL>o$NI.;;(B
69: $B7A<0$NJ}K!(B, @code{set_uufft()} $B$GJV$5$l$kCM0J2<$N<!?t$KBP$7$F$O(B Karatsuba
70: $BK!(B, $B$=$l0J>e$G$O(B FFT$B$*$h$SCf9q>jM>DjM}$,MQ$$$i$l$k(B. $B$9$J$o$A(B,
71: $B@0?t$KBP$9$k(B FFT $B$G$O$J$/(B, $B==J,B?$/$N(B 1 $B%o!<%I0JFb$NK!(B @var{mi} $B$rMQ0U$7(B,
72: @var{p1}, @var{p2} $B$N78?t$r(B @var{mi} $B$G3d$C$?M>$j$H$7$?$b$N$N@Q$r(B,
73: FFT $B$G7W;;$7(B, $B:G8e$KCf9q>jM>DjM}$G9g@.$9$k(B. $B$=$N:](B, $BM-8BBNHG$N4X?t$K(B
74: $B$*$$$F$O(B, $B:G8e$K4pACBN$rI=$9K!$G3F78?t$N>jM>$r7W;;$9$k$,(B, $B$3$3$G$O(B
75: Shoup $B$K$h$k%H%j%C%/$rMQ$$$F9bB.2=$7$F$"$k(B.
76: @end itemize
77:
78: @example
79: [176] load("fff")$
80: [177] cputime(1)$
81: 0sec(1.407e-05sec)
82: [178] setmod_ff(2^160-47);
83: 1461501637330902918203684832716283019655932542929
84: 0sec(0.00028sec)
85: [179] A=randpoly_ff(100,x)$
86: 0sec(0.001422sec)
87: [180] B=randpoly_ff(100,x)$
88: 0sec(0.00107sec)
89: [181] for(I=0;I<100;I++)A*B;
90: 7.77sec + gc : 8.38sec(16.15sec)
91: [182] for(I=0;I<100;I++)umul(A,B);
92: 2.24sec + gc : 1.52sec(3.767sec)
93: [183] for(I=0;I<100;I++)umul_ff(A,B);
94: 1.42sec + gc : 0.24sec(1.653sec)
95: [184] for(I=0;I<100;I++)usquare_ff(A);
96: 1.08sec + gc : 0.21sec(1.297sec)
97: [185] for(I=0;I<100;I++)utmul_ff(A,B,100);
98: 1.2sec + gc : 0.17sec(1.366sec)
99: [186] deg(utmul_ff(A,B,100),x);
100: 100
101: @end example
102:
103: @table @t
104: @item $B;2>H(B
105: @fref{set_upkara set_uptkara set_upfft},
106: @fref{kmul ksquare ktmul}.
107: @end table
108:
109: @node kmul ksquare ktmul,,, $B0lJQ?tB?9`<0$N1i;;(B
110: @subsection @code{kmul}, @code{ksquare}, @code{ktmul}
111: @findex kmul
112: @findex ksquare
113: @findex ktmul
114:
115: @table @t
116: @item kmul(@var{p1},@var{p2})
117: :: $B0lJQ?tB?9`<0$N9bB.>h;;(B
118: @item ksquare(@var{p1})
119: :: $B0lJQ?tB?9`<0$N9bB.(B 2 $B>h;;(B
120: @item ktmul(@var{p1},@var{p2},@var{d})
121: :: $B0lJQ?tB?9`<0$N9bB.>h;;(B ($BBG$A@Z$j<!?t;XDj(B)
122: @end table
123:
124: @table @var
125: @item return
126: $B0lJQ?tB?9`<0(B
127: @item p1 p2
128: $B0lJQ?tB?9`<0(B
129: @item d
130: $BHsIi@0?t(B
131: @end table
132:
133: @itemize @bullet
134: @item
135: $B0lJQ?tB?9`<0$N>h;;$r(B Karatsuba $BK!$G9T$&(B.
136: @item
137: $B4pK\E*$K$O(B @code{umul} $B$HF1MM$@$,(B, $B<!?t$,Bg$-$/$J$C$F$b(B
138: FFT $B$rMQ$$$?9bB.2=$O9T$o$J$$(B.
139: @item
140: GF(2^n) $B78?t$NB?9`<0$K$bMQ$$$k$3$H$,$G$-$k(B.
141: @end itemize
142:
143: @example
144: [0] load("code/fff");
145: 1
146: [34] setmod_ff(defpoly_mod2(160));
147: x^160+x^5+x^3+x^2+1
148: [35] A=randpoly_ff(100,x)$
149: [36] B=randpoly_ff(100,x)$
150: [37] umul(A,B)$
151: umul : invalid argument
152: return to toplevel
153: [37] kmul(A,B)$
154: @end example
155:
156: @node set_upkara set_uptkara set_upfft,,, $B0lJQ?tB?9`<0$N1i;;(B
157: @subsection @code{set_upkara}, @code{set_uptkara}, @code{set_upfft}
158: @findex set_upkara
159: @findex set_uptkara
160: @findex set_upfft
161:
162: @table @t
163: @item set_upkara([@var{threshold}])
164: @itemx set_uptkara([@var{threshold}])
165: @itemx set_upfft([@var{threshold}])
166: :: 1 $BJQ?tB?9`<0$N@Q1i;;$K$*$1$k(B N^2 , Karatsuba, FFT $B%"%k%4%j%:%`$N@ZBX$($NogCM(B
167: @end table
168:
169: @table @var
170: @item return
171: $B@_Dj$5$l$F$$$kCM(B
172: @item threshold
173: $BHsIi@0?t(B
174: @end table
175:
176: @itemize @bullet
177: @item
178: $B$$$:$l$b(B, $B0lJQ?tB?9`<0$N@Q$N7W;;$K$*$1$k(B, $B%"%k%4%j%:%`@ZBX$($NogCM$r(B
179: $B@_Dj$9$k(B.
180: @item
181: $B0lJQ?tB?9`<0$N@Q$O(B, $B<!?t(B N $B$,>.$5$$HO0O$G$ODL>o$N(B N^2 $B%"%k%4%j%:%`(B, $BCfDxEY(B
182: $B$N>l9g(B Karatsuba $B%"%k%4%j%:%`(B, $BBg$-$$>l9g$K$O(B FFT $B%"%k%4%j%:%`$G7W;;(B
183: $B$5$l$k(B. $B$3$N@ZBX$($N<!?t$r@_Dj$9$k(B.
184: @item
185: $B>\:Y$O(B, $B$=$l$>$l$N@Q4X?t$N9`$r;2>H$N$3$H(B.
186: @end itemize
187:
188: @table @t
189: @item $B;2>H(B
190: @fref{kmul ksquare ktmul},
191: @fref{umul umul_ff usquare usquare_ff utmul utmul_ff}.
192: @end table
193:
194: @node utrunc udecomp ureverse,,, $B0lJQ?tB?9`<0$N1i;;(B
195: @subsection @code{utrunc}, @code{udecomp}, @code{ureverse}
196: @findex utrunc
197: @findex udecomp
198: @findex ureverse
199:
200: @table @t
201: @item utrunc(@var{p},@var{d})
202: @itemx udecomp(@var{p},@var{d})
203: @itemx ureverse(@var{p})
204: :: $BB?9`<0$KBP$9$kA`:n(B
205: @end table
206:
207: @table @var
208: @item return
209: $B0lJQ?tB?9`<0$"$k$$$O0lJQ?tB?9`<0$N%j%9%H(B
210: @item p
211: $B0lJQ?tB?9`<0(B
212: @item d
213: $BHsIi@0?t(B
214: @end table
215:
216: @itemize @bullet
217: @item
218: @var{p} $B$NJQ?t$r(B x $B$H$9$k(B. $B$3$N$H$-(B @var{p} = @var{p1}+x^(d+1)@var{p2}
219: (@var{p1} $B$N<!?t$O(B @var{d} $B0J2<(B) $B$HJ,2r$G$-$k(B. @code{utrunc()} $B$O(B
220: @var{p1} $B$rJV$7(B, @code{udecomp()} $B$O(B [@var{p1},@var{p2}] $B$rJV$9(B.
221: @item
222: @var{p} $B$N<!?t$r(B @var{e} $B$H$7(B, @var{i} $B<!$N78?t$r(B @var{p[i]} $B$H$9$l$P(B,
223: @code{ureverse()} $B$O(B @var{p[e]}+@var{p[e-1]}x+... $B$rJV$9(B.
224: @end itemize
225:
226: @example
227: [132] utrunc((x+1)^10,5);
228: 252*x^5+210*x^4+120*x^3+45*x^2+10*x+1
229: [133] udecomp((x+1)^10,5);
230: [252*x^5+210*x^4+120*x^3+45*x^2+10*x+1,x^4+10*x^3+45*x^2+120*x+210]
231: [134] ureverse(3*x^3+x^2+2*x);
232: 2*x^2+x+3
233: @end example
234:
235: @table @t
236: @item $B;2>H(B
237: @fref{udiv urem urembymul urembymul_precomp ugcd}.
238: @end table
239:
240: @node uinv_as_power_series ureverse_inv_as_power_series,,, $B0lJQ?tB?9`<0$N1i;;(B
241: @subsection @code{uinv_as_power_series}, @code{ureverse_inv_as_power_series}
242: @findex uinv_as_power_series
243: @findex ureverse_inv_as_power_series
244:
245: @table @t
246: @item uinv_as_power_series(@var{p},@var{d})
247: @itemx ureverse_inv_as_power_series(@var{p},@var{d})
248: :: $BB?9`<0$rQQ5i?t$H$_$F(B, $B5U857W;;(B
249: @end table
250:
251: @table @var
252: @item return
253: $B0lJQ?tB?9`<0(B
254: @item p
255: $B0lJQ?tB?9`<0(B
256: @item d
257: $BHsIi@0?t(B
258: @end table
259:
260: @itemize @bullet
261: @item
262: @code{uinv_as_power_series(@var{p},@var{d})} $B$O(B, $BDj?t9`$,(B 0 $B$G$J$$(B
263: $BB?9`<0(B @var{p} $B$KBP$7(B, @var{p}@var{r}-1 $B$N:GDc<!?t$,(B @var{d}+1
264: $B0J>e$K$J$k$h$&$J(B $B9b!9(B @var{d} $B<!$NB?9`<0(B @var{r} $B$r5a$a$k(B.
265: @item
266: @code{ureverse_inv_as_power_series(@var{p},@var{d})} $B$O(B
267: @var{p} $B$N<!?t$r(B @var{e} $B$H$9$k$H$-(B, @var{p1}=@code{ureverse(@var{p},@var{e})}
268: $B$KBP$7$F(B @code{uinv_as_power_series(@var{p1},@var{d})} $B$r7W;;$9$k(B.
269: @item
270: @code{rembymul_precomp()} $B$N0z?t$H$7$FMQ$$$k>l9g(B, @code{ureverse_inv_as_power_series()} $B$N7k2L$r$=$N$^$^MQ$$$k$3$H$,$G$-$k(B.
271: @end itemize
272:
273: @example
274: [123] A=(x+1)^5;
275: x^5+5*x^4+10*x^3+10*x^2+5*x+1
276: [124] uinv_as_power_series(A,5);
277: -126*x^5+70*x^4-35*x^3+15*x^2-5*x+1
278: [126] A*R;
279: -126*x^10-560*x^9-945*x^8-720*x^7-210*x^6+1
280: [127] A=x^10+x^9;
281: x^10+x^9
282: [128] R=ureverse_inv_as_power_series(A,5);
283: -x^5+x^4-x^3+x^2-x+1
284: [129] ureverse(A)*R;
285: -x^6+1
286: @end example
287:
288: @table @t
289: @item $B;2>H(B
290: @fref{utrunc udecomp ureverse},
291: @fref{udiv urem urembymul urembymul_precomp ugcd}.
292: @end table
293:
294: @node udiv urem urembymul urembymul_precomp ugcd,,, $B0lJQ?tB?9`<0$N1i;;(B
295: @subsection @code{udiv}, @code{urem}, @code{urembymul}, @code{urembymul_precomp}, @code{ugcd}
296: @findex udiv
297: @findex urem
298: @findex urembymul
299: @findex urembymul_precomp
300: @findex ugcd
301:
302: @table @t
303: @item udiv(@var{p1},@var{p2})
304: @item urem(@var{p1},@var{p2})
305: @item urembymul(@var{p1},@var{p2})
306: @item urembymul_precomp(@var{p1},@var{p2},@var{inv})
307: @item ugcd(@var{p1},@var{p2})
308: :: $BB?9`<0$KBP$9$kA`:n(B
309: @end table
310:
311: @table @var
312: @item return
313: $B0lJQ?tB?9`<0(B
314: @item p1,p2,inv
315: $B0lJQ?tB?9`<0(B
316: @end table
317:
318: @itemize @bullet
319: @item
320: $B0lJQ?tB?9`<0(B @var{p1}, @var{p2} $B$KBP$7(B,
321: @code{udiv} $B$O>&(B, @code{urem}, @code{urembymul} $B$O>jM>(B,
322: @code{ugcd} $B$O(B GCD $B$rJV$9(B.
323: $B$3$l$i$O(B, $BL)$J0lJQ?tB?9`<0$KBP$9$k9bB.2=$r?^$C$?$b$N$G$"$k(B.
324: @code{urembymul} $B$O(B, @var{p2} $B$K$h$k>jM>7W;;$r(B, @var{p2} $B$N(B
325: $BQQ5i?t$H$7$F$N5U857W;;$*$h$S(B, $B>h;;(B 2 $B2s$KCV$-49$($?$b$N$G(B,
326: $B<!?t$,Bg$-$$>l9g$KM-8z$G$"$k(B.
327: @item @code{urembymul_precomp} $B$O(B, $B8GDj$5$l$?B?9`<0$K$h$k>jM>(B
328: $B7W;;$rB??t9T$&>l9g$J$I$K8z2L$rH/4x$9$k(B.
329: @end itemize
330:
331: @example
332: [177] setmod_ff(2^160-47);
333: 1461501637330902918203684832716283019655932542929
334: [178] A=randpoly_ff(200,x)$
335: [179] B=randpoly_ff(101,x)$
336: [180] cputime(1)$
337: 0sec(1.597e-05sec)
338: [181] srem(A,B)$
339: 0.15sec + gc : 0.15sec(0.3035sec)
340: [182] urem(A,B)$
341: 0.11sec + gc : 0.12sec(0.2347sec)
342: [183] urembymul(A,B)$
343: 0.08sec + gc : 0.09sec(0.1651sec)
344: [184] R=ureverse_inv_as_power_series(B,101)$
345: 0.04sec + gc : 0.03sec(0.063sec)
346: [185] urembymul_precomp(A,B,R)$
347: 0.03sec(0.02501sec)
348: @end example
349:
350: @table @t
351: @item $B;2>H(B
352: @fref{uinv_as_power_series ureverse_inv_as_power_series}.
353: @end table
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>