[BACK]Return to ff.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts

Diff for /OpenXM/src/asir-doc/parts/ff.texi between version 1.5 and 1.6

version 1.5, 2003/04/19 15:44:56 version 1.6, 2003/04/20 08:01:25
Line 1 
Line 1 
 @comment $OpenXM: OpenXM/src/asir-doc/parts/ff.texi,v 1.4 2003/04/19 10:36:30 noro Exp $  @comment $OpenXM: OpenXM/src/asir-doc/parts/ff.texi,v 1.5 2003/04/19 15:44:56 noro Exp $
 \BJP  \BJP
 @node $BM-8BBN$K4X$9$k1i;;(B,,, Top  @node $BM-8BBN$K4X$9$k1i;;(B,,, Top
 @chapter $BM-8BBN$K4X$9$k1i;;(B  @chapter $BM-8BBN$K4X$9$k1i;;(B
Line 332  one to obtain the affine coordinate.
Line 332  one to obtain the affine coordinate.
 * gf2ntop::  * gf2ntop::
 * ptosfp sfptop::  * ptosfp sfptop::
 * defpoly_mod2::  * defpoly_mod2::
   * sffctr::
 * fctr_ff::  * fctr_ff::
 * irredcheck_ff::  * irredcheck_ff::
 * randpoly_ff::  * randpoly_ff::
Line 828  whose value is @var{r}.
Line 829  whose value is @var{r}.
 [2] setmod_ff(547);  [2] setmod_ff(547);
 547  547
 [3] F=simp_ff((x-1)^10);  [3] F=simp_ff((x-1)^10);
 1*x^10+537*x^9+45*x^8+427*x^7+210*x^6+295*x^5+210*x^4+427*x^3+45*x^2+537*x+1  1*x^10+537*x^9+45*x^8+427*x^7+210*x^6+295*x^5+210*x^4+427*x^3
   +45*x^2+537*x+1
 [4] lmptop(F);  [4] lmptop(F);
 x^10+537*x^9+45*x^8+427*x^7+210*x^6+295*x^5+210*x^4+427*x^3+45*x^2+537*x+1  x^10+537*x^9+45*x^8+427*x^7+210*x^6+295*x^5+210*x^4+427*x^3
   +45*x^2+537*x+1
 [5] lmptop(coef(F,1));  [5] lmptop(coef(F,1));
 537  537
 [6] ntype(@@@@);  [6] ntype(@@@@);
Line 878  x^10+537*x^9+45*x^8+427*x^7+210*x^6+295*x^5+210*x^4+42
Line 881  x^10+537*x^9+45*x^8+427*x^7+210*x^6+295*x^5+210*x^4+42
 Let @var{m} be a non-negative integer.  Let @var{m} be a non-negative integer.
 @var{m} has the binary representation  @var{m} has the binary representation
 @var{m}=@var{m0}+@var{m1}*2+...+@var{mk}*2^k.  @var{m}=@var{m0}+@var{m1}*2+...+@var{mk}*2^k.
 This function returns an element of  GF(2^@var{n})=GF(2)[t]/(g(t)),  This function returns an element of  GF(2^@var{n}) = GF(2)[t]/(g(t)),
 @var{m0}+@var{m1}*t+...+@var{mk}*t^k mod g(t).  @var{m0}+@var{m1}*t+...+@var{mk}*t^k mod g(t).
 @item  @item
 Apply @code{simp_ff()} to reduce the result.  Apply @code{simp_ff()} to reduce the result.
Line 1186  Then fix @var{m3} as small as possible.
Line 1189  Then fix @var{m3} as small as possible.
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item References  \EG @item References
 @fref{setmod_ff}  @fref{setmod_ff}
   @end table
   
   \JP @node sffctr,,, $BM-8BBN$K4X$9$kH!?t$N$^$H$a(B
   \EG @node sffctr,,, Functions for Finite fields
   @subsection @code{sffctr}
   @findex sffctr
   
   @table @t
   @item sffctr(@var{poly})
   \JP :: $BB?9`<0$N>.I8?tM-8BBN>e$G$N4{LsJ,2r(B
   \EG :: Irreducible factorization over a small finite field.
   @end table
   
   @table @var
   @item return
   \JP $B%j%9%H(B
   \EG list
   @item poly
   \JP $BM-8BBN>e$N(B $BB?9`<0(B
   \EG polynomial over a finite field
   @end table
   
   @itemize @bullet
   \BJP
   @item
   $BB?9`<0$r(B, $B8=:_@_Dj$5$l$F$$$k>.I8?tM-8BBN>e$G4{LsJ,2r$9$k(B.
   @item
   $B7k2L$O(B, [[@var{f1},@var{m1}],[@var{f2},@var{m2}],...] $B$J$k(B
   $B%j%9%H$G$"$k(B. $B$3$3$G(B, @var{fi} $B$O(B monic $B$J4{Ls0x;R(B, @var{mi} $B$O$=$N(B
   $B=EJ#EY$G$"$k(B.
   \E
   \BEG
   @item
   Factorize @var{poly} into irreducible factors over
   a small finite field currently set.
   @item
   The result is a list [[@var{f1},@var{m1}],[@var{f2},@var{m2}],...],
   where @var{fi} is a monic irreducible factor and @var{mi} is its
   multiplicity.
   \E
   @end itemize
   [0] setmod_ff(2,10);
   [2,x^10+x^3+1,x]
   [1] sffctr((z*y^3+z*y)*x^3+(y^5+y^3+z*y^2+z)*x^2+z^11*y*x+z^10*y^3+z^11);
   [[@@_0,1],[@@_0*z*y*x+@@_0*y^3+@@_0*z,1],[(@@_0*y+@@_0)*x+@@_0*z^5,2]]
   @example
   
   @end example
   
   @table @t
   \JP @item $B;2>H(B
   \EG @item References
   @fref{setmod_ff},
   @fref{modfctr}
 @end table  @end table
   
 \JP @node fctr_ff,,, $BM-8BBN$K4X$9$kH!?t$N$^$H$a(B  \JP @node fctr_ff,,, $BM-8BBN$K4X$9$kH!?t$N$^$H$a(B

Legend:
Removed from v.1.5  
changed lines
  Added in v.1.6

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>