[BACK]Return to groebner.texi CVS log [TXT][DIR] Up to [local] / OpenXM / src / asir-doc / parts

Diff for /OpenXM/src/asir-doc/parts/groebner.texi between version 1.2 and 1.5

version 1.2, 1999/12/21 02:47:31 version 1.5, 2003/04/20 08:01:25
Line 1 
Line 1 
 @comment $OpenXM$  @comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.4 2003/04/19 15:44:56 noro Exp $
 \BJP  \BJP
 @node $B%0%l%V%J4pDl$N7W;;(B,,, Top  @node $B%0%l%V%J4pDl$N7W;;(B,,, Top
 @chapter $B%0%l%V%J4pDl$N7W;;(B  @chapter $B%0%l%V%J4pDl$N7W;;(B
Line 17 
Line 17 
 * $B9`=g=x$N@_Dj(B::  * $B9`=g=x$N@_Dj(B::
 * $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B::  * $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B::
 * $B4pDlJQ49(B::  * $B4pDlJQ49(B::
   * Weyl $BBe?t(B::
 * $B%0%l%V%J4pDl$K4X$9$kH!?t(B::  * $B%0%l%V%J4pDl$K4X$9$kH!?t(B::
 \E  \E
 \BEG  \BEG
Line 27 
Line 28 
 * Setting term orderings::  * Setting term orderings::
 * Groebner basis computation with rational function coefficients::  * Groebner basis computation with rational function coefficients::
 * Change of ordering::  * Change of ordering::
   * Weyl algebra::
 * Functions for Groebner basis computation::  * Functions for Groebner basis computation::
 \E  \E
 @end menu  @end menu
Line 228  the head term and the head coefficient respectively.
Line 230  the head term and the head coefficient respectively.
 @noindent  @noindent
 \BJP  \BJP
 $B%0%l%V%J4pDl$r7W;;$9$k$?$a$N4pK\E*$JH!?t$O(B @code{dp_gr_main()} $B$*$h$S(B  $B%0%l%V%J4pDl$r7W;;$9$k$?$a$N4pK\E*$JH!?t$O(B @code{dp_gr_main()} $B$*$h$S(B
 @code{dp_gr_mod_main()} $B$J$k(B 2 $B$D$NAH$_9~$_H!?t$G$"$k$,(B, $BDL>o$O(B, $B%Q%i%a%?(B  @code{dp_gr_mod_main()}, @code{dp_gr_f_main()}
    $B$J$k(B 3 $B$D$NAH$_9~$_H!?t$G$"$k$,(B, $BDL>o$O(B, $B%Q%i%a%?(B
 $B@_Dj$J$I$r9T$C$?$N$A$3$l$i$r8F$S=P$9%f!<%6H!?t$rMQ$$$k$N$,JXMx$G$"$k(B.  $B@_Dj$J$I$r9T$C$?$N$A$3$l$i$r8F$S=P$9%f!<%6H!?t$rMQ$$$k$N$,JXMx$G$"$k(B.
 $B$3$l$i$N%f!<%6H!?t$O(B, $B%U%!%$%k(B @samp{gr} $B$r(B @code{load()} $B$K$h$jFI(B  $B$3$l$i$N%f!<%6H!?t$O(B, $B%U%!%$%k(B @samp{gr} $B$r(B @code{load()} $B$K$h$jFI(B
 $B$_9~$`$3$H$K$h$j;HMQ2DG=$H$J$k(B. @samp{gr} $B$O(B, @b{Asir} $B$NI8=`(B  $B$_9~$`$3$H$K$h$j;HMQ2DG=$H$J$k(B. @samp{gr} $B$O(B, @b{Asir} $B$NI8=`(B
 $B%i%$%V%i%j%G%#%l%/%H%j$KCV$+$l$F$$$k(B. $B$h$C$F(B, $B4D6-JQ?t(B @code{ASIR_LIBDIR}  $B%i%$%V%i%j%G%#%l%/%H%j$KCV$+$l$F$$$k(B.
 $B$rFC$K0[$J$k%Q%9$K@_Dj$7$J$$8B$j(B, $B%U%!%$%kL>$N$_$GFI$_9~$`$3$H$,$G$-$k(B.  
 \E  \E
 \BEG  \BEG
 Facilities for computing Groebner bases are provided not by built-in  Facilities for computing Groebner bases are
 functions but by a set of user functions written in @b{Asir}.  @code{dp_gr_main()}, @code{dp_gr_mod_main()}and @code{dp_gr_f_main()}.
 The set of functions is provided as a file (sometimes called package),  To call these functions,
 named @samp{gr}.  it is necessary to set several parameters correctly and it is convenient
   to use a set of interface functions provided in the library file
   @samp{gr}.
 The facilities will be ready to use after you load the package by  The facilities will be ready to use after you load the package by
 @code{load()}.  The package @samp{gr} is placed in the standard library  @code{load()}.  The package @samp{gr} is placed in the standard library
 directory of @b{Asir}.  Therefore, it is loaded simply by specifying  directory of @b{Asir}.
 its file name, unless the environment variable @code{ASIR_LIBDIR}  
 is set to a non-standard one.  
 \E  \E
   
 @example  @example
Line 350  These parameters can be set and examined by a built-in
Line 352  These parameters can be set and examined by a built-in
   
 @example  @example
 [100] dp_gr_flags();  [100] dp_gr_flags();
 [Demand,0,NoSugar,0,NoCriB,0,NoGC,0,NoMC,0,NoRA,0,NoGCD,0,Top,0,ShowMag,1,  [Demand,0,NoSugar,0,NoCriB,0,NoGC,0,NoMC,0,NoRA,0,NoGCD,0,Top,0,
 Print,1,Stat,0,Reverse,0,InterReduce,0,Multiple,0]  ShowMag,1,Print,1,Stat,0,Reverse,0,InterReduce,0,Multiple,0]
 [101]  [101]
 @end example  @end example
   
Line 530  membercheck
Line 532  membercheck
 (0,0)(0,0)(0,0)(0,0)  (0,0)(0,0)(0,0)(0,0)
 gbcheck total 8 pairs  gbcheck total 8 pairs
 ........  ........
 UP=(0,0)SP=(0,0)SPM=(0,0)NF=(0,0)NFM=(0.010002,0)ZNFM=(0.010002,0)PZ=(0,0)  UP=(0,0)SP=(0,0)SPM=(0,0)NF=(0,0)NFM=(0.010002,0)ZNFM=(0.010002,0)
 NP=(0,0)MP=(0,0)RA=(0,0)MC=(0,0)GC=(0,0)T=40,B=0 M=8 F=6 D=12 ZR=5 NZR=6  PZ=(0,0)NP=(0,0)MP=(0,0)RA=(0,0)MC=(0,0)GC=(0,0)T=40,B=0 M=8 F=6
 Max_mag=6  D=12 ZR=5 NZR=6 Max_mag=6
 [94]  [94]
 @end example  @end example
   
Line 992  time as well as the choice of types of term orderings.
Line 994  time as well as the choice of types of term orderings.
 -40*t^8+70*t^7+252*t^6+30*t^5-140*t^4-168*t^3+2*t^2-12*t+16)*z^2*y  -40*t^8+70*t^7+252*t^6+30*t^5-140*t^4-168*t^3+2*t^2-12*t+16)*z^2*y
 +(-12*t^16+72*t^13-28*t^11-180*t^10+112*t^8+240*t^7+28*t^6-127*t^5  +(-12*t^16+72*t^13-28*t^11-180*t^10+112*t^8+240*t^7+28*t^6-127*t^5
 -167*t^4-55*t^3+30*t^2+58*t-15)*z^4,  -167*t^4-55*t^3+30*t^2+58*t-15)*z^4,
 (y+t^2*z^2)*x+y^7+(20*t^2+6*t+1)*y^2+(-t^17+6*t^14-21*t^12-15*t^11+84*t^9  (y+t^2*z^2)*x+y^7+(20*t^2+6*t+1)*y^2+(-t^17+6*t^14-21*t^12-15*t^11
 +20*t^8-35*t^7-126*t^6-15*t^5+70*t^4+84*t^3-t^2+5*t-9)*z^2*y+(6*t^16-36*t^13  +84*t^9+20*t^8-35*t^7-126*t^6-15*t^5+70*t^4+84*t^3-t^2+5*t-9)*z^2*y
 +14*t^11+90*t^10-56*t^8-120*t^7-14*t^6+64*t^5+84*t^4+27*t^3-16*t^2-30*t+7)*z^4,  +(6*t^16-36*t^13+14*t^11+90*t^10-56*t^8-120*t^7-14*t^6+64*t^5+84*t^4
 (t^3-1)*x-y^6+(-6*t^13+24*t^10-20*t^8-36*t^7+40*t^5+24*t^4-6*t^3-20*t^2-6*t-1)*y  +27*t^3-16*t^2-30*t+7)*z^4,
 +(t^17-6*t^14+9*t^12+15*t^11-36*t^9-20*t^8-5*t^7+54*t^6+15*t^5+10*t^4-36*t^3  (t^3-1)*x-y^6+(-6*t^13+24*t^10-20*t^8-36*t^7+40*t^5+24*t^4-6*t^3-20*t^2
 -11*t^2-5*t+9)*z^2,  -6*t-1)*y+(t^17-6*t^14+9*t^12+15*t^11-36*t^9-20*t^8-5*t^7+54*t^6+15*t^5
   +10*t^4-36*t^3-11*t^2-5*t+9)*z^2,
 -y^8-8*t*y^3+16*z^2*y^2+(-8*t^16+48*t^13-56*t^11-120*t^10+224*t^8+160*t^7  -y^8-8*t*y^3+16*z^2*y^2+(-8*t^16+48*t^13-56*t^11-120*t^10+224*t^8+160*t^7
 -56*t^6-336*t^5-112*t^4+112*t^3+224*t^2+24*t-56)*z^4*y+(t^24-8*t^21+20*t^19  -56*t^6-336*t^5-112*t^4+112*t^3+224*t^2+24*t-56)*z^4*y+(t^24-8*t^21
 +28*t^18-120*t^16-56*t^15+14*t^14+300*t^13+70*t^12-56*t^11-400*t^10-84*t^9  +20*t^19+28*t^18-120*t^16-56*t^15+14*t^14+300*t^13+70*t^12-56*t^11
 +84*t^8+268*t^7+84*t^6-56*t^5-63*t^4-36*t^3+46*t^2-12*t+1)*z,  -400*t^10-84*t^9+84*t^8+268*t^7+84*t^6-56*t^5-63*t^4-36*t^3+46*t^2
 2*t*y^5+z*y^2+(-2*t^11+8*t^8-20*t^6-12*t^5+40*t^3+8*t^2-10*t-20)*z^3*y+8*t^14  -12*t+1)*z,2*t*y^5+z*y^2+(-2*t^11+8*t^8-20*t^6-12*t^5+40*t^3+8*t^2
 -32*t^11+48*t^8-t^7-32*t^5-6*t^4+9*t^2-t,  -10*t-20)*z^3*y+8*t^14-32*t^11+48*t^8-t^7-32*t^5-6*t^4+9*t^2-t,
 -z*y^3+(t^7-2*t^4+3*t^2+t)*y+(-2*t^6+4*t^3+2*t-2)*z^2,  -z*y^3+(t^7-2*t^4+3*t^2+t)*y+(-2*t^6+4*t^3+2*t-2)*z^2,
 2*t^2*y^3+z^2*y^2+(-2*t^5+4*t^2-6)*z^4*y+(4*t^8-t^7-8*t^5+2*t^4-4*t^3+5*t^2-t)*z,  2*t^2*y^3+z^2*y^2+(-2*t^5+4*t^2-6)*z^4*y
   +(4*t^8-t^7-8*t^5+2*t^4-4*t^3+5*t^2-t)*z,
 z^3*y^2+2*t^3*y+(-t^7+2*t^4+t^2-t)*z^2,  z^3*y^2+2*t^3*y+(-t^7+2*t^4+t^2-t)*z^2,
 -t*z*y^2-2*z^3*y+t^8-2*t^5-t^3+t^2,  -t*z*y^2-2*z^3*y+t^8-2*t^5-t^3+t^2,
 -t^3*y^2-2*t^2*z^2*y+(t^6-2*t^3-t+1)*z^4,  -t^3*y^2-2*t^2*z^2*y+(t^6-2*t^3-t+1)*z^4,z^5-t^4]
 z^5-t^4]  
 [93] gr(B,[t,z,y,x],2);  [93] gr(B,[t,z,y,x],2);
 [x^10-t,x^8-z,x^31-x^6-x-y]  [x^10-t,x^8-z,x^31-x^6-x-y]
 @end example  @end example
Line 1214  Refer to the sections for each functions.
Line 1217  Refer to the sections for each functions.
 * lex_hensel_gsl tolex_gsl tolex_gsl_d::  * lex_hensel_gsl tolex_gsl tolex_gsl_d::
 * gr_minipoly minipoly::  * gr_minipoly minipoly::
 * tolexm minipolym::  * tolexm minipolym::
 * dp_gr_main dp_gr_mod_main::  * dp_gr_main dp_gr_mod_main dp_gr_f_main::
 * dp_f4_main dp_f4_mod_main::  * dp_f4_main dp_f4_mod_main::
 * dp_gr_flags dp_gr_print::  * dp_gr_flags dp_gr_print::
 * dp_ord::  * dp_ord::
Line 1239  Refer to the sections for each functions.
Line 1242  Refer to the sections for each functions.
 * katsura hkatsura cyclic hcyclic::  * katsura hkatsura cyclic hcyclic::
 * dp_vtoe dp_etov::  * dp_vtoe dp_etov::
 * lex_hensel_gsl tolex_gsl tolex_gsl_d::  * lex_hensel_gsl tolex_gsl tolex_gsl_d::
   * primadec primedec::
   * primedec_mod::
 @end menu  @end menu
   
 \JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B  \JP @node gr hgr gr_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
Line 1262  Refer to the sections for each functions.
Line 1267  Refer to the sections for each functions.
 @item return  @item return
 \JP $B%j%9%H(B  \JP $B%j%9%H(B
 \EG list  \EG list
 @item plist, vlist, procs  @item plist  vlist  procs
 \JP $B%j%9%H(B  \JP $B%j%9%H(B
 \EG list  \EG list
 @item order  @item order
Line 1341  for communication.
Line 1346  for communication.
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item References  \EG @item References
 @comment @fref{dp_gr_main dp_gr_mod_main},  @comment @fref{dp_gr_main dp_gr_mod_main dp_gr_f_main},
 @fref{dp_gr_main dp_gr_mod_main},  @fref{dp_gr_main dp_gr_mod_main dp_gr_f_main},
 @fref{dp_ord}.  @fref{dp_ord}.
 @end table  @end table
   
Line 1371  for communication.
Line 1376  for communication.
 @item return  @item return
 \JP $B%j%9%H(B  \JP $B%j%9%H(B
 \EG list  \EG list
 @item plist, vlist1, vlist2, procs  @item plist  vlist1  vlist2  procs
 \JP $B%j%9%H(B  \JP $B%j%9%H(B
 \EG list  \EG list
 @item order  @item order
Line 1559  processes.
Line 1564  processes.
 @table @t  @table @t
 \JP @item $B;2>H(B  \JP @item $B;2>H(B
 \EG @item References  \EG @item References
 @fref{dp_gr_main dp_gr_mod_main},  @fref{dp_gr_main dp_gr_mod_main dp_gr_f_main},
 \JP @fref{dp_ord}, @fref{$BJ,;67W;;(B}  \JP @fref{dp_ord}, @fref{$BJ,;67W;;(B}
 \EG @fref{dp_ord}, @fref{Distributed computation}  \EG @fref{dp_ord}, @fref{Distributed computation}
 @end table  @end table
Line 1585  processes.
Line 1590  processes.
 @item return  @item return
 \JP $B%j%9%H(B  \JP $B%j%9%H(B
 \EG list  \EG list
 @item plist, vlist1, vlist2, procs  @item plist  vlist1  vlist2  procs
 \JP $B%j%9%H(B  \JP $B%j%9%H(B
 \EG list  \EG list
 @item order  @item order
Line 1661  processes.
Line 1666  processes.
 [108] GSL[1];  [108] GSL[1];
 [u2,10352277157007342793600000000*u0^31-...]  [u2,10352277157007342793600000000*u0^31-...]
 [109] GSL[5];  [109] GSL[5];
 [u0,11771021876193064124640000000*u0^32-...,376672700038178051988480000000*u0^31-...]  [u0,11771021876193064124640000000*u0^32-...,
   376672700038178051988480000000*u0^31-...]
 @end example  @end example
   
 @table @t  @table @t
Line 1691  processes.
Line 1697  processes.
 @item return  @item return
 \JP $BB?9`<0(B  \JP $BB?9`<0(B
 \EG polynomial  \EG polynomial
 @item plist, vlist  @item plist  vlist
 \JP $B%j%9%H(B  \JP $B%j%9%H(B
 \EG list  \EG list
 @item order  @item order
Line 1788  for @code{gr_minipoly()}.
Line 1794  for @code{gr_minipoly()}.
 @item return  @item return
 \JP @code{tolexm()} : $B%j%9%H(B, @code{minipolym()} : $BB?9`<0(B  \JP @code{tolexm()} : $B%j%9%H(B, @code{minipolym()} : $BB?9`<0(B
 \EG @code{tolexm()} : list, @code{minipolym()} : polynomial  \EG @code{tolexm()} : list, @code{minipolym()} : polynomial
 @item plist, vlist1, vlist2  @item plist  vlist1  vlist2
 \JP $B%j%9%H(B  \JP $B%j%9%H(B
 \EG list  \EG list
 @item order  @item order
Line 1836  z^32+11405*z^31+20868*z^30+21602*z^29+...
Line 1842  z^32+11405*z^31+20868*z^30+21602*z^29+...
 @fref{gr_minipoly minipoly}.  @fref{gr_minipoly minipoly}.
 @end table  @end table
   
 \JP @node dp_gr_main dp_gr_mod_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B  \JP @node dp_gr_main dp_gr_mod_main dp_gr_f_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
 \EG @node dp_gr_main dp_gr_mod_main,,, Functions for Groebner basis computation  \EG @node dp_gr_main dp_gr_mod_main dp_gr_f_main,,, Functions for Groebner basis computation
 @subsection @code{dp_gr_main}, @code{dp_gr_mod_main}  @subsection @code{dp_gr_main}, @code{dp_gr_mod_main}, @code{dp_gr_f_main}
 @findex dp_gr_main  @findex dp_gr_main
 @findex dp_gr_mod_main  @findex dp_gr_mod_main
   @findex dp_gr_f_main
   
 @table @t  @table @t
 @item dp_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})  @item dp_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})
 @itemx dp_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})  @itemx dp_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order})
   @itemx dp_gr_f_main(@var{plist},@var{vlist},@var{homo},@var{order})
 \JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B)  \JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B)
 \EG :: Groebner basis computation (built-in functions)  \EG :: Groebner basis computation (built-in functions)
 @end table  @end table
Line 1853  z^32+11405*z^31+20868*z^30+21602*z^29+...
Line 1861  z^32+11405*z^31+20868*z^30+21602*z^29+...
 @item return  @item return
 \JP $B%j%9%H(B  \JP $B%j%9%H(B
 \EG list  \EG list
 @item plist, vlist  @item plist  vlist
 \JP $B%j%9%H(B  \JP $B%j%9%H(B
 \EG list  \EG list
 @item order  @item order
Line 1874  z^32+11405*z^31+20868*z^30+21602*z^29+...
Line 1882  z^32+11405*z^31+20868*z^30+21602*z^29+...
 @code{hgr()}, @code{gr_mod()} $B$J$I$O$9$Y$F$3$l$i$NH!?t$r8F$S=P$7$F7W;;(B  @code{hgr()}, @code{gr_mod()} $B$J$I$O$9$Y$F$3$l$i$NH!?t$r8F$S=P$7$F7W;;(B
 $B$r9T$C$F$$$k(B.  $B$r9T$C$F$$$k(B.
 @item  @item
   @code{dp_gr_f_main()} $B$O(B, $B<o!9$NM-8BBN>e$N%0%l%V%J4pDl$r7W;;$9$k(B
   $B>l9g$KMQ$$$k(B. $BF~NO$O(B, $B$"$i$+$8$a(B, @code{simp_ff()} $B$J$I$G(B,
   $B9M$($kM-8BBN>e$K<M1F$5$l$F$$$kI,MW$,$"$k(B.
   @item
 $B%U%i%0(B @var{homo} $B$,(B 0 $B$G$J$$;~(B, $BF~NO$r@F<!2=$7$F$+$i(B Buchberger $B%"%k%4%j%:%`(B  $B%U%i%0(B @var{homo} $B$,(B 0 $B$G$J$$;~(B, $BF~NO$r@F<!2=$7$F$+$i(B Buchberger $B%"%k%4%j%:%`(B
 $B$r<B9T$9$k(B.  $B$r<B9T$9$k(B.
 @item  @item
Line 1907  These functions are fundamental built-in functions for
Line 1919  These functions are fundamental built-in functions for
 computation and @code{gr()},@code{hgr()} and @code{gr_mod()}  computation and @code{gr()},@code{hgr()} and @code{gr_mod()}
 are all interfaces to these functions.  are all interfaces to these functions.
 @item  @item
   @code{dp_gr_f_main()} is a function for Groebner basis computation
   over various finite fields. Coefficients of input polynomials
   must be converted to elements of a finite field
   currently specified by @code{setmod_ff()}.
   @item
 If @var{homo} is not equal to 0, homogenization is applied before entering  If @var{homo} is not equal to 0, homogenization is applied before entering
 Buchberger algorithm  Buchberger algorithm
 @item  @item
Line 1944  Actual computation is controlled by various parameters
Line 1961  Actual computation is controlled by various parameters
 @fref{dp_ord},  @fref{dp_ord},
 @fref{dp_gr_flags dp_gr_print},  @fref{dp_gr_flags dp_gr_print},
 @fref{gr hgr gr_mod},  @fref{gr hgr gr_mod},
   @fref{setmod_ff},
 \JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}.  \JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}.
 \EG @fref{Controlling Groebner basis computations}  \EG @fref{Controlling Groebner basis computations}
 @end table  @end table
Line 1965  Actual computation is controlled by various parameters
Line 1983  Actual computation is controlled by various parameters
 @item return  @item return
 \JP $B%j%9%H(B  \JP $B%j%9%H(B
 \EG list  \EG list
 @item plist, vlist  @item plist  vlist
 \JP $B%j%9%H(B  \JP $B%j%9%H(B
 \EG list  \EG list
 @item order  @item order
Line 2035  and showing informations.
Line 2053  and showing informations.
 @itemize @bullet  @itemize @bullet
 \BJP  \BJP
 @item  @item
 @code{dp_gr_main()}, @code{dp_gr_mod_main()} $B<B9T;~$K$*$1$k$5$^$6$^(B  @code{dp_gr_main()}, @code{dp_gr_mod_main()}, @code{dp_gr_f_main()}  $B<B9T;~$K$*$1$k$5$^$6$^(B
 $B$J%Q%i%a%?$r@_Dj(B, $B;2>H$9$k(B.  $B$J%Q%i%a%?$r@_Dj(B, $B;2>H$9$k(B.
 @item  @item
 $B0z?t$,$J$$>l9g(B, $B8=:_$N@_Dj$,JV$5$l$k(B.  $B0z?t$,$J$$>l9g(B, $B8=:_$N@_Dj$,JV$5$l$k(B.
Line 2211  the coefficient field.
Line 2229  the coefficient field.
 (1)*<<2,0,0>>+(2)*<<1,1,0>>+(1)*<<0,2,0>>+(2)*<<1,0,1>>+(2)*<<0,1,1>>  (1)*<<2,0,0>>+(2)*<<1,1,0>>+(1)*<<0,2,0>>+(2)*<<1,0,1>>+(2)*<<0,1,1>>
 +(1)*<<0,0,2>>  +(1)*<<0,0,2>>
 [52] dp_ptod((x+y+z)^2,[x,y]);  [52] dp_ptod((x+y+z)^2,[x,y]);
 (1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>+(z^2)*<<0,0>>  (1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>
   +(z^2)*<<0,0>>
 @end example  @end example
   
 @table @t  @table @t
Line 2263  variables of @var{dpoly}.
Line 2282  variables of @var{dpoly}.
   
 @example  @example
 [53] T=dp_ptod((x+y+z)^2,[x,y]);  [53] T=dp_ptod((x+y+z)^2,[x,y]);
 (1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>+(z^2)*<<0,0>>  (1)*<<2,0>>+(2)*<<1,1>>+(1)*<<0,2>>+(2*z)*<<1,0>>+(2*z)*<<0,1>>
   +(z^2)*<<0,0>>
 [54] P=dp_dtop(T,[a,b]);  [54] P=dp_dtop(T,[a,b]);
 z^2+(2*a+2*b)*z+a^2+2*b*a+b^2  z^2+(2*a+2*b)*z+a^2+2*b*a+b^2
 @end example  @end example
Line 2616  For single computation @code{p_nf} and @code{p_true_nf
Line 2636  For single computation @code{p_nf} and @code{p_true_nf
 [74] DP2=newvect(length(G),map(dp_ptod,G,V))$  [74] DP2=newvect(length(G),map(dp_ptod,G,V))$
 [75] T=dp_ptod((u0-u1+u2-u3+u4)^2,V)$  [75] T=dp_ptod((u0-u1+u2-u3+u4)^2,V)$
 [76] dp_dtop(dp_nf([0,1,2,3,4],T,DP1,1),V);  [76] dp_dtop(dp_nf([0,1,2,3,4],T,DP1,1),V);
 u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2^2+(6*u1-2)*u2+9*u1^2-6*u1+1  u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2^2
   +(6*u1-2)*u2+9*u1^2-6*u1+1
 [77] dp_dtop(dp_nf([4,3,2,1,0],T,DP1,1),V);  [77] dp_dtop(dp_nf([4,3,2,1,0],T,DP1,1),V);
 -5*u4^2+(-4*u3-4*u2-4*u1)*u4-u3^2-3*u3-u2^2+(2*u1-1)*u2-2*u1^2-3*u1+1  -5*u4^2+(-4*u3-4*u2-4*u1)*u4-u3^2-3*u3-u2^2+(2*u1-1)*u2-2*u1^2-3*u1+1
 [78] dp_dtop(dp_nf([0,1,2,3,4],T,DP2,1),V);  [78] dp_dtop(dp_nf([0,1,2,3,4],T,DP2,1),V);
 -1138087976845165778088612297273078520347097001020471455633353049221045677593  -11380879768451657780886122972730785203470970010204714556333530492210
 0005716505560062087150928400876150217079820311439477560587583488*u4^15+...  456775930005716505560062087150928400876150217079820311439477560587583
   488*u4^15+...
 [79] dp_dtop(dp_nf([4,3,2,1,0],T,DP2,1),V);  [79] dp_dtop(dp_nf([4,3,2,1,0],T,DP2,1),V);
 -1138087976845165778088612297273078520347097001020471455633353049221045677593  -11380879768451657780886122972730785203470970010204714556333530492210
 0005716505560062087150928400876150217079820311439477560587583488*u4^15+...  456775930005716505560062087150928400876150217079820311439477560587583
   488*u4^15+...
 [80] @@78==@@79;  [80] @@78==@@79;
 1  1
 @end example  @end example
Line 2790  selection strategy of critical pairs in Groebner basis
Line 2813  selection strategy of critical pairs in Groebner basis
 @item return  @item return
 \JP $BJ,;6I=8=B?9`<0(B  \JP $BJ,;6I=8=B?9`<0(B
 \EG distributed polynomial  \EG distributed polynomial
 @item dpoly1, dpoly2  @item dpoly1  dpoly2
 \JP $BJ,;6I=8=B?9`<0(B  \JP $BJ,;6I=8=B?9`<0(B
 \EG distributed polynomial  \EG distributed polynomial
 @end table  @end table
Line 2833  two polynomials, where coefficient is always set to 1.
Line 2856  two polynomials, where coefficient is always set to 1.
 @item return  @item return
 \JP $B@0?t(B  \JP $B@0?t(B
 \EG integer  \EG integer
 @item dpoly1, dpoly2  @item dpoly1  dpoly2
 \JP $BJ,;6I=8=B?9`<0(B  \JP $BJ,;6I=8=B?9`<0(B
 \EG distributed polynomial  \EG distributed polynomial
 @end table  @end table
Line 2888  Used for finding candidate terms at reduction of polyn
Line 2911  Used for finding candidate terms at reduction of polyn
 @item return  @item return
 \JP $BJ,;6I=8=B?9`<0(B  \JP $BJ,;6I=8=B?9`<0(B
 \EG distributed polynomial  \EG distributed polynomial
 @item dpoly1, dpoly2  @item dpoly1  dpoly2
 \JP $BJ,;6I=8=B?9`<0(B  \JP $BJ,;6I=8=B?9`<0(B
 \EG distributed polynomial  \EG distributed polynomial
 @end table  @end table
Line 3112  values of @code{dp_mag()} for intermediate basis eleme
Line 3135  values of @code{dp_mag()} for intermediate basis eleme
 @item return  @item return
 \JP $B%j%9%H(B  \JP $B%j%9%H(B
 \EG list  \EG list
 @item dpoly1, dpoly2, dpoly3  @item dpoly1  dpoly2  dpoly3
 \JP $BJ,;6I=8=B?9`<0(B  \JP $BJ,;6I=8=B?9`<0(B
 \EG distributed polynomial  \EG distributed polynomial
 @item vlist  @item vlist
Line 3136  values of @code{dp_mag()} for intermediate basis eleme
Line 3159  values of @code{dp_mag()} for intermediate basis eleme
 $B$J$i$J$$(B.  $B$J$i$J$$(B.
 @item  @item
 $B0z?t$,@0?t78?t$N;~(B, $B4JLs$O(B, $BJ,?t$,8=$l$J$$$h$&(B, $B@0?t(B @var{a}, @var{b},  $B0z?t$,@0?t78?t$N;~(B, $B4JLs$O(B, $BJ,?t$,8=$l$J$$$h$&(B, $B@0?t(B @var{a}, @var{b},
 $B9`(B @var{t} $B$K$h$j(B @var{a(dpoly1 + dpoly2)-bt dpoly3} $B$H$7$F7W;;$5$l$k(B.  $B9`(B @var{t} $B$K$h$j(B @var{a}(@var{dpoly1} + @var{dpoly2})-@var{bt} @var{dpoly3} $B$H$7$F7W;;$5$l$k(B.
 @item  @item
 $B7k2L$O(B, @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]} $B$J$k%j%9%H$G$"$k(B.  $B7k2L$O(B, @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]} $B$J$k%j%9%H$G$"$k(B.
 \E  \E
Line 3155  the divisibility of the head term of @var{dpoly2} by t
Line 3178  the divisibility of the head term of @var{dpoly2} by t
 When integral coefficients, computation is so carefully performed that  When integral coefficients, computation is so carefully performed that
 no rational operations appear in the reduction procedure.  no rational operations appear in the reduction procedure.
 It is computed for integers @var{a} and @var{b}, and a term @var{t} as:  It is computed for integers @var{a} and @var{b}, and a term @var{t} as:
 @var{a(dpoly1 + dpoly2)-bt dpoly3}.  @var{a}(@var{dpoly1} + @var{dpoly2})-@var{bt} @var{dpoly3}.
 @item  @item
 The result is a list @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]}.  The result is a list @code{[@var{a dpoly1},@var{a dpoly2 - bt dpoly3}]}.
 \E  \E
Line 3169  The result is a list @code{[@var{a dpoly1},@var{a dpol
Line 3192  The result is a list @code{[@var{a dpoly1},@var{a dpol
 [159] C=12*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>;  [159] C=12*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>;
 (12)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>  (12)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>
 [160] dp_red(D,R,C);  [160] dp_red(D,R,C);
 [(6)*<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>,(-1)*<<0,1,1,1,0>>  [(6)*<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>,
 +(-1)*<<1,1,0,0,1>>]  (-1)*<<0,1,1,1,0>>+(-1)*<<1,1,0,0,1>>]
 @end example  @end example
   
 @table @t  @table @t
Line 3196  The result is a list @code{[@var{a dpoly1},@var{a dpol
Line 3219  The result is a list @code{[@var{a dpoly1},@var{a dpol
 @item return  @item return
 \JP $BJ,;6I=8=B?9`<0(B  \JP $BJ,;6I=8=B?9`<0(B
 \EG distributed polynomial  \EG distributed polynomial
 @item dpoly1, dpoly2  @item dpoly1  dpoly2
 \JP $BJ,;6I=8=B?9`<0(B  \JP $BJ,;6I=8=B?9`<0(B
 \EG distributed polynomial  \EG distributed polynomial
 @item mod  @item mod
Line 3272  as a form of @code{[numerator, denominator]})
Line 3295  as a form of @code{[numerator, denominator]})
 @item poly  @item poly
 \JP $BB?9`<0(B  \JP $BB?9`<0(B
 \EG polynomial  \EG polynomial
 @item plist,vlist  @item plist vlist
 \JP $B%j%9%H(B  \JP $B%j%9%H(B
 \EG list  \EG list
 @item order  @item order
Line 3408  exists.
Line 3431  exists.
 @example  @example
 [233] G=gr(katsura(5),[u5,u4,u3,u2,u1,u0],2)$  [233] G=gr(katsura(5),[u5,u4,u3,u2,u1,u0],2)$
 [234] p_terms(G[0],[u5,u4,u3,u2,u1,u0],2);  [234] p_terms(G[0],[u5,u4,u3,u2,u1,u0],2);
 [u5,u0^31,u0^30,u0^29,u0^28,u0^27,u0^26,u0^25,u0^24,u0^23,u0^22,u0^21,u0^20,  [u5,u0^31,u0^30,u0^29,u0^28,u0^27,u0^26,u0^25,u0^24,u0^23,u0^22,
 u0^19,u0^18,u0^17,u0^16,u0^15,u0^14,u0^13,u0^12,u0^11,u0^10,u0^9,u0^8,u0^7,  u0^21,u0^20,u0^19,u0^18,u0^17,u0^16,u0^15,u0^14,u0^13,u0^12,u0^11,
 u0^6,u0^5,u0^4,u0^3,u0^2,u0,1]  u0^10,u0^9,u0^8,u0^7,u0^6,u0^5,u0^4,u0^3,u0^2,u0,1]
 @end example  @end example
   
 \JP @node gb_comp,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B  \JP @node gb_comp,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
Line 3427  u0^6,u0^5,u0^4,u0^3,u0^2,u0,1]
Line 3450  u0^6,u0^5,u0^4,u0^3,u0^2,u0,1]
 @table @var  @table @var
 \JP @item return 0 $B$^$?$O(B 1  \JP @item return 0 $B$^$?$O(B 1
 \EG @item return 0 or 1  \EG @item return 0 or 1
 @item plist1, plist2  @item plist1  plist2
 @end table  @end table
   
 @itemize @bullet  @itemize @bullet
Line 3518  Polynomial set @code{cyclic} is sometimes called by ot
Line 3541  Polynomial set @code{cyclic} is sometimes called by ot
 [79] load("cyclic")$  [79] load("cyclic")$
 [89] katsura(5);  [89] katsura(5);
 [u0+2*u4+2*u3+2*u2+2*u1+2*u5-1,2*u4*u0-u4+2*u1*u3+u2^2+2*u5*u1,  [u0+2*u4+2*u3+2*u2+2*u1+2*u5-1,2*u4*u0-u4+2*u1*u3+u2^2+2*u5*u1,
 2*u3*u0+2*u1*u4-u3+(2*u1+2*u5)*u2,2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3-u2+u1^2,  2*u3*u0+2*u1*u4-u3+(2*u1+2*u5)*u2,2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3
 2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2-u1,  -u2+u1^2,2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2-u1,
 u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]  u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]
 [90] hkatsura(5);  [90] hkatsura(5);
 [-t+u0+2*u4+2*u3+2*u2+2*u1+2*u5,  [-t+u0+2*u4+2*u3+2*u2+2*u1+2*u5,
Line 3546  u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]
Line 3569  u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]
 \EG @item References  \EG @item References
 @fref{dp_dtop}.  @fref{dp_dtop}.
 @end table  @end table
   
   \JP @node primadec primedec,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
   \EG @node primadec primedec,,, Functions for Groebner basis computation
   @subsection @code{primadec}, @code{primedec}
   @findex primadec
   @findex primedec
   
   @table @t
   @item primadec(@var{plist},@var{vlist})
   @item primedec(@var{plist},@var{vlist})
   \JP :: $B%$%G%"%k$NJ,2r(B
   \EG :: Computes decompositions of ideals.
   @end table
   
   @table @var
   @item return
   @itemx plist
   \JP $BB?9`<0%j%9%H(B
   \EG list of polynomials
   @item vlist
   \JP $BJQ?t%j%9%H(B
   \EG list of variables
   @end table
   
   @itemize @bullet
   \BJP
   @item
   @code{primadec()}, @code{primedec} $B$O(B @samp{primdec} $B$GDj5A$5$l$F$$$k(B.
   @item
   @code{primadec()}, @code{primedec()} $B$O$=$l$>$lM-M}?tBN>e$G$N%$%G%"%k$N(B
   $B=`AGJ,2r(B, $B:,4p$NAG%$%G%"%kJ,2r$r9T$&(B.
   @item
   $B0z?t$OB?9`<0%j%9%H$*$h$SJQ?t%j%9%H$G$"$k(B. $BB?9`<0$OM-M}?t78?t$N$_$,5v$5$l$k(B.
   @item
   @code{primadec} $B$O(B @code{[$B=`AG@.J,(B, $BIUB0AG%$%G%"%k(B]} $B$N%j%9%H$rJV$9(B.
   @item
   @code{primadec} $B$O(B $BAG0x;R$N%j%9%H$rJV$9(B.
   @item
   $B7k2L$K$*$$$F(B, $BB?9`<0%j%9%H$H$7$FI=<($5$l$F$$$k3F%$%G%"%k$OA4$F(B
   $B%0%l%V%J4pDl$G$"$k(B. $BBP1~$9$k9`=g=x$O(B, $B$=$l$>$l(B
   $BJQ?t(B @code{PRIMAORD}, @code{PRIMEORD} $B$K3JG<$5$l$F$$$k(B.
   @item
   @code{primadec} $B$O(B @code{[Shimoyama,Yokoyama]} $B$N=`AGJ,2r%"%k%4%j%:%`(B
   $B$r<BAu$7$F$$$k(B.
   @item
   $B$b$7AG0x;R$N$_$r5a$a$?$$$J$i(B, @code{primedec} $B$r;H$&J}$,$h$$(B.
   $B$3$l$O(B, $BF~NO%$%G%"%k$,:,4p%$%G%"%k$G$J$$>l9g$K(B, @code{primadec}
   $B$N7W;;$KM>J,$J%3%9%H$,I,MW$H$J$k>l9g$,$"$k$+$i$G$"$k(B.
   \E
   \BEG
   @item
   Function @code{primadec()} and @code{primedec} are defined in @samp{primdec}.
   @item
   @code{primadec()}, @code{primedec()} are the function for primary
   ideal decomposition and prime decomposition of the radical over the
   rationals respectively.
   @item
   The arguments are a list of polynomials and a list of variables.
   These functions accept ideals with rational function coefficients only.
   @item
   @code{primadec} returns the list of pair lists consisting a primary component
   and its associated prime.
   @item
   @code{primedec} returns the list of prime components.
   @item
   Each component is a Groebner basis and the corresponding term order
   is indicated by the global variables @code{PRIMAORD}, @code{PRIMEORD}
   respectively.
   @item
   @code{primadec} implements the primary decompostion algorithm
   in @code{[Shimoyama,Yokoyama]}.
   @item
   If one only wants to know the prime components of an ideal, then
   use @code{primedec} because @code{primadec} may need additional costs
   if an input ideal is not radical.
   \E
   @end itemize
   
   @example
   [84] load("primdec")$
   [102] primedec([p*q*x-q^2*y^2+q^2*y,-p^2*x^2+p^2*x+p*q*y,
   (q^3*y^4-2*q^3*y^3+q^3*y^2)*x-q^3*y^4+q^3*y^3,
   -q^3*y^4+2*q^3*y^3+(-q^3+p*q^2)*y^2],[p,q,x,y]);
   [[y,x],[y,p],[x,q],[q,p],[x-1,q],[y-1,p],[(y-1)*x-y,q*y^2-2*q*y-p+q]]
   [103] primadec([x,z*y,w*y^2,w^2*y-z^3,y^3],[x,y,z,w]);
   [[[x,z*y,y^2,w^2*y-z^3],[z,y,x]],[[w,x,z*y,z^3,y^3],[w,z,y,x]]]
   @end example
   
   @table @t
   \JP @item $B;2>H(B
   \EG @item References
   @fref{fctr sqfr},
   \JP @fref{$B9`=g=x$N@_Dj(B}.
   \EG @fref{Setting term orderings}.
   @end table
   
   \BJP
   @node Weyl $BBe?t(B,,, $B%0%l%V%J4pDl$N7W;;(B
   @section Weyl $BBe?t(B
   \E
   \BEG
   @node Weyl algebra,,, Groebner basis computation
   @section Weyl algebra
   \E
   
   @noindent
   
   \BJP
   $B$3$l$^$G$O(B, $BDL>o$N2D49$JB?9`<04D$K$*$1$k%0%l%V%J4pDl7W;;$K$D$$$F(B
   $B=R$Y$F$-$?$,(B, $B%0%l%V%J4pDl$NM}O@$O(B, $B$"$k>r7o$rK~$?$9Hs2D49$J(B
   $B4D$K$b3HD%$G$-$k(B. $B$3$N$h$&$J4D$NCf$G(B, $B1~MQ>e$b=EMW$J(B,
   Weyl $BBe?t(B, $B$9$J$o$AB?9`<04D>e$NHyJ,:nMQAG4D$N1i;;$*$h$S(B
   $B%0%l%V%J4pDl7W;;$,(B Risa/Asir $B$K<BAu$5$l$F$$$k(B.
   
   $BBN(B @code{K} $B>e$N(B @code{n} $B<!85(B Weyl $BBe?t(B
   @code{D=K<x1,@dots{},xn,D1,@dots{},Dn>} $B$O(B
   \E
   
   \BEG
   So far we have explained Groebner basis computation in
   commutative polynomial rings. However Groebner basis can be
   considered in more general non-commutative rings.
   Weyl algebra is one of such rings and
   Risa/Asir implements fundamental operations
   in Weyl algebra and Groebner basis computation in Weyl algebra.
   
   The @code{n} dimensional Weyl algebra over a field @code{K},
   @code{D=K<x1,@dots{},xn,D1,@dots{},Dn>} is a non-commutative
   algebra which has the following fundamental relations:
   \E
   
   @code{xi*xj-xj*xi=0}, @code{Di*Dj-Dj*Di=0}, @code{Di*xj-xj*Di=0} (@code{i!=j}),
   @code{Di*xi-xi*Di=1}
   
   \BJP
   $B$H$$$&4pK\4X78$r;}$D4D$G$"$k(B. @code{D} $B$O(B $BB?9`<04D(B @code{K[x1,@dots{},xn]} $B$r78?t(B
   $B$H$9$kHyJ,:nMQAG4D$G(B,  @code{Di} $B$O(B @code{xi} $B$K$h$kHyJ,$rI=$9(B. $B8r494X78$K$h$j(B,
   @code{D} $B$N85$O(B, @code{x1^i1*@dots{}*xn^in*D1^j1*@dots{}*Dn^jn} $B$J$kC19`(B
   $B<0$N(B @code{K} $B@~7A7k9g$H$7$F=q$-I=$9$3$H$,$G$-$k(B.
   Risa/Asir $B$K$*$$$F$O(B, $B$3$NC19`<0$r(B, $B2D49$JB?9`<0$HF1MM$K(B
   @code{<<i1,@dots{},in,j1,@dots{},jn>>} $B$GI=$9(B. $B$9$J$o$A(B, @code{D} $B$N85$b(B
   $BJ,;6I=8=B?9`<0$H$7$FI=$5$l$k(B. $B2C8:;;$O(B, $B2D49$N>l9g$HF1MM$K(B, @code{+}, @code{-}
   $B$K$h$j(B
   $B<B9T$G$-$k$,(B, $B>h;;$O(B, $BHs2D49@-$r9MN8$7$F(B @code{dp_weyl_mul()} $B$H$$$&4X?t(B
   $B$K$h$j<B9T$9$k(B.
   \E
   
   \BEG
   @code{D} is the ring of differential operators whose coefficients
   are polynomials in @code{K[x1,@dots{},xn]} and
   @code{Di} denotes the differentiation with respect to  @code{xi}.
   According to the commutation relation,
   elements of @code{D} can be represented as a @code{K}-linear combination
   of monomials @code{x1^i1*@dots{}*xn^in*D1^j1*@dots{}*Dn^jn}.
   In Risa/Asir, this type of monomial is represented
   by @code{<<i1,@dots{},in,j1,@dots{},jn>>} as in the case of commutative
   polynomial.
   That is, elements of @code{D} are represented by distributed polynomials.
   Addition and subtraction can be done by @code{+}, @code{-},
   but multiplication is done by calling @code{dp_weyl_mul()} because of
   the non-commutativity of @code{D}.
   \E
   
   @example
   [0] A=<<1,2,2,1>>;
   (1)*<<1,2,2,1>>
   [1] B=<<2,1,1,2>>;
   (1)*<<2,1,1,2>>
   [2] A*B;
   (1)*<<3,3,3,3>>
   [3] dp_weyl_mul(A,B);
   (1)*<<3,3,3,3>>+(1)*<<3,2,3,2>>+(4)*<<2,3,2,3>>+(4)*<<2,2,2,2>>
   +(2)*<<1,3,1,3>>+(2)*<<1,2,1,2>>
   @end example
   
   \BJP
   $B%0%l%V%J4pDl7W;;$K$D$$$F$b(B, Weyl $BBe?t@lMQ$N4X?t$H$7$F(B,
   $B<!$N4X?t$,MQ0U$7$F$"$k(B.
   \E
   \BEG
   The following functions are avilable for Groebner basis computation
   in Weyl algebra:
   \E
   @code{dp_weyl_gr_main()},
   @code{dp_weyl_gr_mod_main()},
   @code{dp_weyl_gr_f_main()},
   @code{dp_weyl_f4_main()},
   @code{dp_weyl_f4_mod_main()}.
   \BJP
   $B$^$?(B, $B1~MQ$H$7$F(B, global b $B4X?t$N7W;;$,<BAu$5$l$F$$$k(B.
   \E
   \BEG
   Computation of the global b function is implemented as an application.
   \E
   
   \JP @node primedec_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B
   \EG @node primedec_mod,,, Functions for Groebner basis computation
   @subsection @code{primedec_mod}
   @findex primedec_mod
   
   @table @t
   @item primedec_mod(@var{plist},@var{vlist},@var{ord},@var{mod},@var{strategy})
   \JP :: $B%$%G%"%k$NJ,2r(B
   \EG :: Computes decompositions of ideals over small finite fields.
   @end table
   
   @table @var
   @item return
   @itemx plist
   \JP $BB?9`<0%j%9%H(B
   \EG list of polynomials
   @item vlist
   \JP $BJQ?t%j%9%H(B
   \EG list of variables
   @item ord
   \JP $B?t(B, $B%j%9%H$^$?$O9TNs(B
   \EG number, list or matrix
   @item mod
   \JP $B@5@0?t(B
   \EG positive integer
   @item strategy
   \JP $B@0?t(B
   \EG integer
   @end table
   
   @itemize @bullet
   \BJP
   @item
   @code{primedec_mod()} $B$O(B @samp{primdec_mod}
   $B$GDj5A$5$l$F$$$k(B. @code{[Yokoyama]} $B$NAG%$%G%"%kJ,2r%"%k%4%j%:%`(B
   $B$r<BAu$7$F$$$k(B.
   @item
   @code{primedec_mod()} $B$OM-8BBN>e$G$N%$%G%"%k$N(B
   $B:,4p$NAG%$%G%"%kJ,2r$r9T$$(B, $BAG%$%G%"%k$N%j%9%H$rJV$9(B.
   @item
   @code{primedec_mod()} $B$O(B, GF(@var{mod}) $B>e$G$NJ,2r$rM?$($k(B.
   $B7k2L$N3F@.J,$N@8@.85$O(B, $B@0?t78?tB?9`<0$G$"$k(B.
   @item
   $B7k2L$K$*$$$F(B, $BB?9`<0%j%9%H$H$7$FI=<($5$l$F$$$k3F%$%G%"%k$OA4$F(B
   [@var{vlist},@var{ord}] $B$G;XDj$5$l$k9`=g=x$K4X$9$k%0%l%V%J4pDl$G$"$k(B.
   @item
   @var{strategy} $B$,(B 0 $B$G$J$$$H$-(B, incremental $B$K(B component $B$N6&DL(B
   $BItJ,$r7W;;$9$k$3$H$K$h$k(B early termination $B$r9T$&(B. $B0lHL$K(B,
   $B%$%G%"%k$N<!85$,9b$$>l9g$KM-8z$@$,(B, 0 $B<!85$N>l9g$J$I(B, $B<!85$,>.$5$$(B
   $B>l9g$K$O(B overhead $B$,Bg$-$$>l9g$,$"$k(B.
   \E
   \BEG
   @item
   Function @code{primedec_mod()}
   is defined in @samp{primdec_mod} and implements the prime decomposition
   algorithm in @code{[Yokoyama]}.
   @item
   @code{primedec_mod()}
   is the function for prime ideal decomposition
   of the radical of a polynomial ideal over small finite field,
   and they return a list of prime ideals, which are associated primes
   of the input ideal.
   @item
   @code{primedec_mod()} gives the decomposition over GF(@var{mod}).
   The generators of each resulting component consists of integral polynomials.
   @item
   Each resulting component is a Groebner basis with respect to
   a term order specified by [@var{vlist},@var{ord}].
   @item
   If @var{strategy} is non zero, then the early termination strategy
   is tried by computing the intersection of obtained components
   incrementally. In general, this strategy is useful when the krull
   dimension of the ideal is high, but it may add some overhead
   if the dimension is small.
   \E
   @end itemize
   
   @example
   [0] load("primdec_mod")$
   [246] PP444=[x^8+x^2+t,y^8+y^2+t,z^8+z^2+t]$
   [247] primedec_mod(PP444,[x,y,z,t],0,2,1);
   [[y+z,x+z,z^8+z^2+t],[x+y,y^2+y+z^2+z+1,z^8+z^2+t],
   [y+z+1,x+z+1,z^8+z^2+t],[x+z,y^2+y+z^2+z+1,z^8+z^2+t],
   [y+z,x^2+x+z^2+z+1,z^8+z^2+t],[y+z+1,x^2+x+z^2+z+1,z^8+z^2+t],
   [x+z+1,y^2+y+z^2+z+1,z^8+z^2+t],[y+z+1,x+z,z^8+z^2+t],
   [x+y+1,y^2+y+z^2+z+1,z^8+z^2+t],[y+z,x+z+1,z^8+z^2+t]]
   [248]
   @end example
   
   @table @t
   \JP @item $B;2>H(B
   \EG @item References
   @fref{modfctr},
   @fref{dp_gr_main dp_gr_mod_main dp_gr_f_main},
   \JP @fref{$B9`=g=x$N@_Dj(B}.
   \EG @fref{Setting term orderings}.
   @end table
   
   
   
   

Legend:
Removed from v.1.2  
changed lines
  Added in v.1.5

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>