=================================================================== RCS file: /home/cvs/OpenXM/src/asir-doc/parts/groebner.texi,v retrieving revision 1.5 retrieving revision 1.17 diff -u -p -r1.5 -r1.17 --- OpenXM/src/asir-doc/parts/groebner.texi 2003/04/20 08:01:25 1.5 +++ OpenXM/src/asir-doc/parts/groebner.texi 2006/09/06 23:53:31 1.17 @@ -1,4 +1,4 @@ -@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.4 2003/04/19 15:44:56 noro Exp $ +@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.16 2004/10/20 00:30:55 fujiwara Exp $ \BJP @node $B%0%l%V%J4pDl$N7W;;(B,,, Top @chapter $B%0%l%V%J4pDl$N7W;;(B @@ -15,6 +15,7 @@ * $B4pK\E*$JH!?t(B:: * $B7W;;$*$h$SI=<($N@)8f(B:: * $B9`=g=x$N@_Dj(B:: +* Weight:: * $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B:: * $B4pDlJQ49(B:: * Weyl $BBe?t(B:: @@ -26,6 +27,7 @@ * Fundamental functions:: * Controlling Groebner basis computations:: * Setting term orderings:: +* Weight:: * Groebner basis computation with rational function coefficients:: * Change of ordering:: * Weyl algebra:: @@ -449,6 +451,13 @@ If `on', various informations during a Groebner basis displayed. \E +@item PrintShort +\JP on $B$G!"(BPrint $B$,(B off $B$N>l9g(B, $B%0%l%V%J4pDl7W;;$NESCf$N>pJs$rC;=L7A$GI=<($9$k(B. +\BEG +If `on' and Print is `off', short information during a Groebner basis computation is +displayed. +\E + @item Stat \BJP on $B$G(B @code{Print} $B$,(B off $B$J$i$P(B, @code{Print} $B$,(B on $B$N$H$-I=<($5(B @@ -471,24 +480,28 @@ is shown after every normal computation. After comlet computation the maximal value among the sums is shown. \E -@item Multiple +@item Content +@itemx Multiple \BJP -0 $B$G$J$$@0?t$N;~(B, $BM-M}?t>e$N@55,7A7W;;$K$*$$$F(B, $B78?t$N%S%C%HD9$NOB$,(B -@code{Multiple} $BG\$K$J$k$4$H$K78?tA4BN$N(B GCD $B$,7W;;$5$l(B, $B$=$N(B GCD $B$G(B -$B3d$C$?B?9`<0$r4JLs$9$k(B. @code{Multiple} $B$,(B 1 $B$J$i$P(B, $B4JLs$9$k$4$H$K(B -GCD $B7W;;$,9T$o$l0lHL$K$O8zN($,0-$/$J$k$,(B, @code{Multiple} $B$r(B 2 $BDxEY(B +0 $B$G$J$$M-M}?t$N;~(B, $BM-M}?t>e$N@55,7A7W;;$K$*$$$F(B, $B78?t$N%S%C%HD9$NOB$,(B +@code{Content} $BG\$K$J$k$4$H$K78?tA4BN$N(B GCD $B$,7W;;$5$l(B, $B$=$N(B GCD $B$G(B +$B3d$C$?B?9`<0$r4JLs$9$k(B. @code{Content} $B$,(B 1 $B$J$i$P(B, $B4JLs$9$k$4$H$K(B +GCD $B7W;;$,9T$o$l0lHL$K$O8zN($,0-$/$J$k$,(B, @code{Content} $B$r(B 2 $BDxEY(B $B$H$9$k$H(B, $B5pBg$J@0?t$,78?t$K8=$l$k>l9g(B, $B8zN($,NI$/$J$k>l9g$,$"$k(B. +backward compatibility $B$N$?$a!"(B@code{Multiple} $B$G@0?tCM$r;XDj$G$-$k(B. \E \BEG -If a non-zero integer, in a normal form computation +If a non-zero rational number, in a normal form computation over the rationals, the integer content of the polynomial being -reduced is removed when its magnitude becomes @code{Multiple} times +reduced is removed when its magnitude becomes @code{Content} times larger than a registered value, which is set to the magnitude of the input polynomial. After each content removal the registered value is -set to the magnitude of the resulting polynomial. @code{Multiple} is +set to the magnitude of the resulting polynomial. @code{Content} is equal to 1, the simiplification is done after every normal form computation. -It is empirically known that it is often efficient to set @code{Multiple} to 2 +It is empirically known that it is often efficient to set @code{Content} to 2 for the case where large integers appear during the computation. +An integer value can be set by the keyword @code{Multiple} for +backward compatibility. \E @item Demand @@ -1044,6 +1057,139 @@ beforehand, and some heuristic trial may be inevitable \E \BJP +@node Weight ,,, $B%0%l%V%J4pDl$N7W;;(B +@section Weight +\E +\BEG +@node Weight,,, Groebner basis computation +@section Weight +\E +\BJP +$BA0@a$G>R2p$7$?9`=g=x$O(B, $B3FJQ?t$K(B weight ($B=E$_(B) $B$r@_Dj$9$k$3$H$G(B +$B$h$j0lHLE*$J$b$N$H$J$k(B. +\E +\BEG +Term orderings introduced in the previous section can be generalized +by setting a weight for each variable. +\E +@example +[0] dp_td(<<1,1,1>>); +3 +[1] dp_set_weight([1,2,3])$ +[2] dp_td(<<1,1,1>>); +6 +@end example +\BJP +$BC19`<0$NA4$l(B 1,2,3 $B$H;XDj$7$F$$$k(B. $B$3$N$?$a(B, @code{<<1,1,1>>} +$B$NA4l9g$,$"$k(B. +\E +\BEG +By default, the total degree of a monomial is equal to +the sum of all exponents. This means that the weight for each variable +is set to 1. +In this example, the weights for the first, the second and the third +variable are set to 1, 2 and 3 respectively. +Therefore the total degree of @code{<<1,1,1>>} under this weight, +which is called the weight of the monomial, is @code{1*1+1*2+1*3=6}. +By setting weights, different term orderings can be set under a type of +term ordeing. In some case a polynomial can +be made weighted homogeneous by setting an appropriate weight. +\E + +\BJP +$B3FJQ?t$KBP$9$k(B weight $B$r$^$H$a$?$b$N$r(B weight vector $B$H8F$V(B. +$B$9$Y$F$N@.J,$,@5$G$"$j(B, $B%0%l%V%J4pDl7W;;$K$*$$$F(B, $BA4$O(B 0 $B$N(B weight vector $B$K$h$kHf3S$r(B +$B:G=i$K9T$C$F$+$i(B, $B3F%V%m%C%/Kh$N(B tie breaking $B$r9T$&$3$H$KAjEv$9$k(B. +\E + +\BEG +A list of weights for all variables is called a weight vector. +A weight vector is called a sugar weight vector if +its elements are all positive and it is used for computing +a weighted total degree of a monomial, because such a weight +is used instead of total degree in sugar strategy. +On the other hand, a weight vector whose elements are not necessarily +positive cannot be set as a sugar weight, but it is useful for +generalizing term order. In fact, such a weight vector already +appeared in a matrix order. That is, each row of a matrix defining +a term order is regarded as a weight vector. A block order +is also considered as a refinement of comparison by weight vectors. +It compares two terms by using a weight vector whose elements +corresponding to variables in a block is 1 and 0 otherwise, +then it applies a tie breaker. +\E + +\BJP +weight vector $B$N@_Dj$O(B @code{dp_set_weight()} $B$G9T$&$3$H$,$G$-$k(B +$B$,(B, $B9`=g=x$r;XDj$9$k:]$NB>$N%Q%i%a%?(B ($B9`=g=x7?(B, $BJQ?t=g=x(B) $B$H(B +$B$^$H$a$F@_Dj$G$-$k$3$H$,K>$^$7$$(B. $B$3$N$?$a(B, $Bl9g$K$O(B, +tie breaker $B$H$7$FA4o$N2D49$JB?9`<04D$K$*$1$k%0%l%V%J4pDl7W;;$K$D$$$F(B +$B=R$Y$F$-$?$,(B, $B%0%l%V%J4pDl$NM}O@$O(B, $B$"$k>r7o$rK~$?$9Hs2D49$J(B +$B4D$K$b3HD%$G$-$k(B. $B$3$N$h$&$J4D$NCf$G(B, $B1~MQ>e$b=EMW$J(B, +Weyl $BBe?t(B, $B$9$J$o$AB?9`<04D>e$NHyJ,:nMQAG4D$N1i;;$*$h$S(B +$B%0%l%V%J4pDl7W;;$,(B Risa/Asir $B$Ke$N(B @code{n} $B} $B$O(B +\E + +\BEG +So far we have explained Groebner basis computation in +commutative polynomial rings. However Groebner basis can be +considered in more general non-commutative rings. +Weyl algebra is one of such rings and +Risa/Asir implements fundamental operations +in Weyl algebra and Groebner basis computation in Weyl algebra. + +The @code{n} dimensional Weyl algebra over a field @code{K}, +@code{D=K} is a non-commutative +algebra which has the following fundamental relations: +\E + +@code{xi*xj-xj*xi=0}, @code{Di*Dj-Dj*Di=0}, @code{Di*xj-xj*Di=0} (@code{i!=j}), +@code{Di*xi-xi*Di=1} + +\BJP +$B$H$$$&4pK\4X78$r;}$D4D$G$"$k(B. @code{D} $B$O(B $BB?9`<04D(B @code{K[x1,@dots{},xn]} $B$r78?t(B +$B$H$9$kHyJ,:nMQAG4D$G(B, @code{Di} $B$O(B @code{xi} $B$K$h$kHyJ,$rI=$9(B. $B8r494X78$K$h$j(B, +@code{D} $B$N85$O(B, @code{x1^i1*@dots{}*xn^in*D1^j1*@dots{}*Dn^jn} $B$J$kC19`(B +$B<0$N(B @code{K} $B@~7A7k9g$H$7$F=q$-I=$9$3$H$,$G$-$k(B. +Risa/Asir $B$K$*$$$F$O(B, $B$3$NC19`<0$r(B, $B2D49$JB?9`<0$HF1MM$K(B +@code{<>} $B$GI=$9(B. $B$9$J$o$A(B, @code{D} $B$N85$b(B +$BJ,;6I=8=B?9`<0$H$7$FI=$5$l$k(B. $B2C8:;;$O(B, $B2D49$N>l9g$HF1MM$K(B, @code{+}, @code{-} +$B$K$h$j(B +$Bh;;$O(B, $BHs2D49@-$r9MN8$7$F(B @code{dp_weyl_mul()} $B$H$$$&4X?t(B +$B$K$h$j>} as in the case of commutative +polynomial. +That is, elements of @code{D} are represented by distributed polynomials. +Addition and subtraction can be done by @code{+}, @code{-}, +but multiplication is done by calling @code{dp_weyl_mul()} because of +the non-commutativity of @code{D}. +\E + +@example +[0] A=<<1,2,2,1>>; +(1)*<<1,2,2,1>> +[1] B=<<2,1,1,2>>; +(1)*<<2,1,1,2>> +[2] A*B; +(1)*<<3,3,3,3>> +[3] dp_weyl_mul(A,B); +(1)*<<3,3,3,3>>+(1)*<<3,2,3,2>>+(4)*<<2,3,2,3>>+(4)*<<2,2,2,2>> ++(2)*<<1,3,1,3>>+(2)*<<1,2,1,2>> +@end example + +\BJP +$B%0%l%V%J4pDl7W;;$K$D$$$F$b(B, Weyl $BBe?t@lMQ$N4X?t$H$7$F(B, +$Bl9g$O$[$H$s$IDL?.$N$?$a$N;~4V$G$"$k(B. +@item +$BB?9`<0%j%9%H(B @var{plist} $B$NMWAG$,J,;6I=8=B?9`<0$N>l9g$O(B +$B7k2L$bJ,;6I=8=B?9`<0$N%j%9%H$G$"$k(B. +$B$3$N>l9g(B, $B0z?t$NJ,;6B?9`<0$OM?$($i$l$?=g=x$K=>$$(B @code{dp_sort} $B$G(B +$B%=!<%H$5$l$F$+$i7W;;$5$l$k(B. +$BB?9`<0%j%9%H$NMWAG$,J,;6I=8=B?9`<0$N>l9g$b(B +$BJQ?t$N?tJ,$NITDj85$N%j%9%H$r(B @var{vlist} $B0z?t$H$7$FM?$($J$$$H$$$1$J$$(B +($B%@%_!<(B). \E \BEG @item @@ -1329,6 +1584,13 @@ Therefore this function is useful to reduce the actual The CPU time shown after an exection of @code{dgr()} indicates that of the master process, and most of the time corresponds to the time for communication. +@item +When the elements of @var{plist} are distributed polynomials, +the result is also a list of distributed polynomials. +In this case, firstly the elements of @var{plist} is sorted by @code{dp_sort} +and the Grobner basis computation is started. +Variables must be given in @var{vlist} even in this case +(these variables are dummy). \E @end itemize @@ -1346,8 +1608,7 @@ for communication. @table @t \JP @item $B;2>H(B \EG @item References -@comment @fref{dp_gr_main dp_gr_mod_main dp_gr_f_main}, -@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main}, +@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main}, @fref{dp_ord}. @end table @@ -1564,7 +1825,7 @@ processes. @table @t \JP @item $B;2>H(B \EG @item References -@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main}, +@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main}, \JP @fref{dp_ord}, @fref{$BJ,;67W;;(B} \EG @fref{dp_ord}, @fref{Distributed computation} @end table @@ -1580,8 +1841,8 @@ processes. @item lex_hensel_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo}) \JP :: GSL $B7A<0$N%$%G%"%k4pDl$N7W;;(B \EG ::Computation of an GSL form ideal basis -@item tolex_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo}) -@itemx tolex_gsl_d(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{homo},@var{procs}) +@item tolex_gsl(@var{plist},@var{vlist1},@var{order},@var{vlist2}) +@itemx tolex_gsl_d(@var{plist},@var{vlist1},@var{order},@var{vlist2},@var{procs}) \JP :: $B%0%l%V%J4pDl$rF~NO$H$9$k(B, GSL $B7A<0$N%$%G%"%k4pDl$N7W;;(B \EG :: Computation of an GSL form ideal basis stating from a Groebner basis @end table @@ -1842,17 +2103,23 @@ z^32+11405*z^31+20868*z^30+21602*z^29+... @fref{gr_minipoly minipoly}. @end table -\JP @node dp_gr_main dp_gr_mod_main dp_gr_f_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B -\EG @node dp_gr_main dp_gr_mod_main dp_gr_f_main,,, Functions for Groebner basis computation -@subsection @code{dp_gr_main}, @code{dp_gr_mod_main}, @code{dp_gr_f_main} +\JP @node dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B +\EG @node dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main,,, Functions for Groebner basis computation +@subsection @code{dp_gr_main}, @code{dp_gr_mod_main}, @code{dp_gr_f_main}, @code{dp_weyl_gr_main}, @code{dp_weyl_gr_mod_main}, @code{dp_weyl_gr_f_main} @findex dp_gr_main @findex dp_gr_mod_main @findex dp_gr_f_main +@findex dp_weyl_gr_main +@findex dp_weyl_gr_mod_main +@findex dp_weyl_gr_f_main @table @t @item dp_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) @itemx dp_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) @itemx dp_gr_f_main(@var{plist},@var{vlist},@var{homo},@var{order}) +@itemx dp_weyl_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) +@itemx dp_weyl_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) +@itemx dp_weyl_gr_f_main(@var{plist},@var{vlist},@var{homo},@var{order}) \JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) \EG :: Groebner basis computation (built-in functions) @end table @@ -1880,9 +2147,10 @@ z^32+11405*z^31+20868*z^30+21602*z^29+... @item $B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;$N4pK\E*AH$_9~$_H!?t$G$"$j(B, @code{gr()}, @code{hgr()}, @code{gr_mod()} $B$J$I$O$9$Y$F$3$l$i$NH!?t$r8F$S=P$7$F7W;;(B -$B$r9T$C$F$$$k(B. +$B$r9T$C$F$$$k(B. $B4X?tL>$K(B weyl $B$,F~$C$F$$$k$b$N$O(B, Weyl $BBe?t>e$N7W;;(B +$B$N$?$a$N4X?t$G$"$k(B. @item -@code{dp_gr_f_main()} $B$O(B, $Be$N%0%l%V%J4pDl$r7W;;$9$k(B +@code{dp_gr_f_main()}, @code{dp_weyl_f_main()} $B$O(B, $Be$N%0%l%V%J4pDl$r7W;;$9$k(B $B>l9g$KMQ$$$k(B. $BF~NO$O(B, $B$"$i$+$8$a(B, @code{simp_ff()} $B$J$I$G(B, $B9M$($kM-8BBN>e$K'$5$ $B;;K!$G$"$j(B, $BK\jM>DjM}$K$h$k@~7AJ}Dx<05a2r$rMQ$$$?(B $B;n83E*$J$l(B @code{dp_gr_main()}, @code{dp_gr_mod_main()} +$B@F$l(B +@code{dp_gr_main()}, @code{dp_gr_mod_main()}, +@code{dp_weyl_gr_main()}, @code{dp_weyl_gr_mod_main()} $B$HF1MM$G$"$k(B. \E \BEG @@ -2012,7 +2288,9 @@ invented by J.C. Faugere. The current implementation o uses Chinese Remainder theorem and not highly optimized. @item Arguments and actions are the same as those of -@code{dp_gr_main()}, @code{dp_gr_mod_main()}. +@code{dp_gr_main()}, @code{dp_gr_mod_main()}, +@code{dp_weyl_gr_main()}, @code{dp_weyl_gr_mod_main()}, +except for lack of the argument for controlling homogenization. \E @end itemize @@ -2026,6 +2304,140 @@ Arguments and actions are the same as those of \EG @fref{Controlling Groebner basis computations} @end table +\JP @node nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B +\EG @node nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace,,, Functions for Groebner basis computation +@subsection @code{nd_gr}, @code{nd_gr_trace}, @code{nd_f4}, @code{nd_f4_trace}, @code{nd_weyl_gr}, @code{nd_weyl_gr_trace} +@findex nd_gr +@findex nd_gr_trace +@findex nd_f4 +@findex nd_f4_trace +@findex nd_weyl_gr +@findex nd_weyl_gr_trace + +@table @t +@item nd_gr(@var{plist},@var{vlist},@var{p},@var{order}) +@itemx nd_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}) +@itemx nd_f4(@var{plist},@var{vlist},@var{modular},@var{order}) +@itemx nd_f4_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}) +@item nd_weyl_gr(@var{plist},@var{vlist},@var{p},@var{order}) +@itemx nd_weyl_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}) +\JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) +\EG :: Groebner basis computation (built-in functions) +@end table + +@table @var +@item return +\JP $B%j%9%H(B +\EG list +@item plist vlist +\JP $B%j%9%H(B +\EG list +@item order +\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B +\EG number, list or matrix +@item homo +\JP $B%U%i%0(B +\EG flag +@item modular +\JP $B%U%i%0$^$?$OAG?t(B +\EG flag or prime +@end table + +\BJP +@itemize @bullet +@item +$B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;AH$_9~$_4X?t$N?7e$N(B Buchberger +$B%"%k%4%j%:%`$re$N<+A3?t$N$H$-(B, GF(p) $B>e$N(B +Buchberger $B%"%k%4%j%:%`$re$G(B trace $B%"%k%4%j%:%`$re$N$H$-(B, trace $B$O(BGF(p) $B>e$G7W;;$5$l$k(B. trace $B%"%k%4%j%:%`(B +$B$,<:GT$7$?>l9g(B 0 $B$,JV$5$l$k(B. @code{p} $B$,Ii$N>l9g(B, $B%0%l%V%J4pDl%A%'%C%/$O(B +$B9T$o$J$$(B. $B$3$N>l9g(B, @code{p} $B$,(B -1 $B$J$i$P<+F0E*$KA*$P$l$?AG?t$,(B, +$B$=$l0J30$O;XDj$5$l$?AG?t$rMQ$$$F%0%l%V%J4pDl8uJd$N7W;;$,9T$o$l$k(B. +@code{nd_f4_trace} $B$O(B, $B3FA4e$G(B F4 $B%"%k%4%j%:%`(B +$B$G9T$C$?7k2L$r$b$H$K(B, $B$=$NM-8BBN>e$G(B 0 $B$G$J$$4pDl$rM?$($k(B S-$BB?9`<0$N$_$r(B +$BMQ$$$F9TNs@8@.$r9T$$(B, $B$=$NA4e$N(B, @code{modular} $B$,(B +$B%^%7%s%5%$%:AG?t$N$H$-M-8BBN>e$N(B F4 $B%"%k%4%j%:%`$re$N7W;;$OL$BP1~$G$"$k(B. +@item +$B0lHL$K(B @code{dp_gr_main}, @code{dp_gr_mod_main} $B$h$j9bB.$G$"$k$,(B, +$BFC$KM-8BBN>e$N>l9g82Cx$G$"$k(B. +@end itemize +\E + +\BEG +@itemize @bullet +@item +These functions are new implementations for computing Groebner bases. +@item @code{nd_gr} executes Buchberger algorithm over the rationals +if @code{p} is 0, and that over GF(p) if @code{p} is a prime. +@item @code{nd_gr_trace} executes the trace algorithm over the rationals. +If @code{p} is 0 or 1, the trace algorithm is executed until it succeeds +by using automatically chosen primes. +If @code{p} a positive prime, +the trace is comuted over GF(p). +If the trace algorithm fails 0 is returned. +If @code{p} is negative, +the Groebner basis check and ideal-membership check are omitted. +In this case, an automatically chosen prime if @code{p} is 1, +otherwise the specified prime is used to compute a Groebner basis +candidate. +Execution of @code{nd_f4_trace} is done as follows: +For each total degree, an F4-reduction of S-polynomials over a finite field +is done, and S-polynomials which give non-zero basis elements are gathered. +Then F4-reduction over Q is done for the gathered S-polynomials. +The obtained polynomial set is a Groebner basis candidate and the same +check procedure as in the case of @code{nd_gr_trace} is done. +@item +@code{nd_f4} executes F4 algorithm over Q if @code{modular} is equal to 0, +or over a finite field GF(@code{modular}) +if @code{modular} is a prime number of machine size (<2^29). +@item +@code{nd_weyl_gr}, @code{nd_weyl_gr_trace} are for Weyl algebra computation. +@item +Each function cannot handle rational function coefficient cases. +@item +In general these functions are more efficient than +@code{dp_gr_main}, @code{dp_gr_mod_main}, especially over finite fields. +@end itemize +\E + +@example +[38] load("cyclic")$ +[49] C=cyclic(7)$ +[50] V=vars(C)$ +[51] cputime(1)$ +[52] dp_gr_mod_main(C,V,0,31991,0)$ +26.06sec + gc : 0.313sec(26.4sec) +[53] nd_gr(C,V,31991,0)$ +ndv_alloc=1477188 +5.737sec + gc : 0.1837sec(5.921sec) +[54] dp_f4_mod_main(C,V,31991,0)$ +3.51sec + gc : 0.7109sec(4.221sec) +[55] nd_f4(C,V,31991,0)$ +1.906sec + gc : 0.126sec(2.032sec) +@end example + +@table @t +\JP @item $B;2>H(B +\EG @item References +@fref{dp_ord}, +@fref{dp_gr_flags dp_gr_print}, +\JP @fref{$B7W;;$*$h$SI=<($N@)8f(B}. +\EG @fref{Controlling Groebner basis computations} +@end table + \JP @node dp_gr_flags dp_gr_print,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B \EG @node dp_gr_flags dp_gr_print,,, Functions for Groebner basis computation @subsection @code{dp_gr_flags}, @code{dp_gr_print} @@ -2034,7 +2446,7 @@ Arguments and actions are the same as those of @table @t @item dp_gr_flags([@var{list}]) -@itemx dp_gr_print([@var{0|1}]) +@itemx dp_gr_print([@var{i}]) \JP :: $B7W;;$*$h$SI=<(MQ%Q%i%a%?$N@_Dj(B, $B;2>H(B \BEG :: Set and show various parameters for cotrolling computations and showing informations. @@ -2048,6 +2460,9 @@ and showing informations. @item list \JP $B%j%9%H(B \EG list +@item i +\JP $B@0?t(B +\EG integer @end table @itemize @bullet @@ -2061,9 +2476,18 @@ and showing informations. $B0z?t$O(B, @code{["Print",1,"NoSugar",1,...]} $B$J$k7A$N%j%9%H$G(B, $B:8$+$i=g$K(B $B@_Dj$5$l$k(B. $B%Q%i%a%?L>$OJ8;zNs$GM?$($kI,MW$,$"$k(B. @item -@code{dp_gr_print()} $B$O(B, $BFC$K%Q%i%a%?(B @code{Print} $B$NCM$rD>@\@_Dj(B, $B;2>H(B -$B$G$-$k(B. $B$3$l$O(B, @code{dp_gr_main()} $B$J$I$r%5%V%k!<%A%s$H$7$FMQ$$$k%f!<%6(B -$BH!?t$K$*$$$F(B, @code{Print} $B$NCM$r8+$F(B, $B$=$N%5%V%k!<%A%s$,Cf4V>pJs$NI=<((B +@code{dp_gr_print()} $B$O(B, $BFC$K%Q%i%a%?(B @code{Print}, @code{PrintShort} $B$NCM$rD>@\@_Dj(B, $B;2>H(B +$B$G$-$k(B. $B@_Dj$5$l$kCM$OpJs$NI=<((B $B$r9T$&:]$K(B, $B?WB.$K%U%i%0$r8+$k$3$H$,$G$-$k$h$&$KMQ0U$5$l$F$$$k(B. \E \BEG @@ -2078,8 +2502,17 @@ Arguments must be specified as a list such as strings. @item @code{dp_gr_print()} is used to set and show the value of a parameter -@code{Print}. This functions is prepared to get quickly the value of -@code{Print} when a user defined function calling @code{dp_gr_main()} etc. +@code{Print} and @code{PrintShort}. +@table @var +@item i=0 +@code{Print=0}, @code{PrintShort=0} +@item i=1 +@code{Print=1}, @code{PrintShort=0} +@item i=2 +@code{Print=0}, @code{PrintShort=1} +@end table +This functions is prepared to get quickly the value +when a user defined function calling @code{dp_gr_main()} etc. uses the value as a flag for showing intermediate informations. \E @end itemize @@ -3665,105 +4098,6 @@ if an input ideal is not radical. \EG @fref{Setting term orderings}. @end table -\BJP -@node Weyl $BBe?t(B,,, $B%0%l%V%J4pDl$N7W;;(B -@section Weyl $BBe?t(B -\E -\BEG -@node Weyl algebra,,, Groebner basis computation -@section Weyl algebra -\E - -@noindent - -\BJP -$B$3$l$^$G$O(B, $BDL>o$N2D49$JB?9`<04D$K$*$1$k%0%l%V%J4pDl7W;;$K$D$$$F(B -$B=R$Y$F$-$?$,(B, $B%0%l%V%J4pDl$NM}O@$O(B, $B$"$k>r7o$rK~$?$9Hs2D49$J(B -$B4D$K$b3HD%$G$-$k(B. $B$3$N$h$&$J4D$NCf$G(B, $B1~MQ>e$b=EMW$J(B, -Weyl $BBe?t(B, $B$9$J$o$AB?9`<04D>e$NHyJ,:nMQAG4D$N1i;;$*$h$S(B -$B%0%l%V%J4pDl7W;;$,(B Risa/Asir $B$Ke$N(B @code{n} $B} $B$O(B -\E - -\BEG -So far we have explained Groebner basis computation in -commutative polynomial rings. However Groebner basis can be -considered in more general non-commutative rings. -Weyl algebra is one of such rings and -Risa/Asir implements fundamental operations -in Weyl algebra and Groebner basis computation in Weyl algebra. - -The @code{n} dimensional Weyl algebra over a field @code{K}, -@code{D=K} is a non-commutative -algebra which has the following fundamental relations: -\E - -@code{xi*xj-xj*xi=0}, @code{Di*Dj-Dj*Di=0}, @code{Di*xj-xj*Di=0} (@code{i!=j}), -@code{Di*xi-xi*Di=1} - -\BJP -$B$H$$$&4pK\4X78$r;}$D4D$G$"$k(B. @code{D} $B$O(B $BB?9`<04D(B @code{K[x1,@dots{},xn]} $B$r78?t(B -$B$H$9$kHyJ,:nMQAG4D$G(B, @code{Di} $B$O(B @code{xi} $B$K$h$kHyJ,$rI=$9(B. $B8r494X78$K$h$j(B, -@code{D} $B$N85$O(B, @code{x1^i1*@dots{}*xn^in*D1^j1*@dots{}*Dn^jn} $B$J$kC19`(B -$B<0$N(B @code{K} $B@~7A7k9g$H$7$F=q$-I=$9$3$H$,$G$-$k(B. -Risa/Asir $B$K$*$$$F$O(B, $B$3$NC19`<0$r(B, $B2D49$JB?9`<0$HF1MM$K(B -@code{<>} $B$GI=$9(B. $B$9$J$o$A(B, @code{D} $B$N85$b(B -$BJ,;6I=8=B?9`<0$H$7$FI=$5$l$k(B. $B2C8:;;$O(B, $B2D49$N>l9g$HF1MM$K(B, @code{+}, @code{-} -$B$K$h$j(B -$Bh;;$O(B, $BHs2D49@-$r9MN8$7$F(B @code{dp_weyl_mul()} $B$H$$$&4X?t(B -$B$K$h$j>} as in the case of commutative -polynomial. -That is, elements of @code{D} are represented by distributed polynomials. -Addition and subtraction can be done by @code{+}, @code{-}, -but multiplication is done by calling @code{dp_weyl_mul()} because of -the non-commutativity of @code{D}. -\E - -@example -[0] A=<<1,2,2,1>>; -(1)*<<1,2,2,1>> -[1] B=<<2,1,1,2>>; -(1)*<<2,1,1,2>> -[2] A*B; -(1)*<<3,3,3,3>> -[3] dp_weyl_mul(A,B); -(1)*<<3,3,3,3>>+(1)*<<3,2,3,2>>+(4)*<<2,3,2,3>>+(4)*<<2,2,2,2>> -+(2)*<<1,3,1,3>>+(2)*<<1,2,1,2>> -@end example - -\BJP -$B%0%l%V%J4pDl7W;;$K$D$$$F$b(B, Weyl $BBe?t@lMQ$N4X?t$H$7$F(B, -$Bl9g$KM-8z$@$,(B, 0 $Bl9g$J$I(B, $B.$5$$(B $B>l9g$K$O(B overhead $B$,Bg$-$$>l9g$,$"$k(B. +@item +$B7W;;ESCf$GFbIt>pJs$r8+$?$$>l9g$K$O!"(B +$BA0$b$C$F(B @code{dp_gr_print(2)} $B$rH(B \EG @item References @fref{modfctr}, -@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main}, +@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main}, \JP @fref{$B9`=g=x$N@_Dj(B}. -\EG @fref{Setting term orderings}. +\EG @fref{Setting term orderings}, +@fref{dp_gr_flags dp_gr_print}. @end table +\JP @node bfunction bfct generic_bfct ann ann0,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B +\EG @node bfunction bfct generic_bfct ann ann0,,, Functions for Groebner basis computation +@subsection @code{bfunction}, @code{bfct}, @code{generic_bfct}, @code{ann}, @code{ann0} +@findex bfunction +@findex bfct +@findex generic_bfct +@findex ann +@findex ann0 +@table @t +@item bfunction(@var{f}) +@itemx bfct(@var{f}) +@itemx generic_bfct(@var{plist},@var{vlist},@var{dvlist},@var{weight}) +\JP :: @var{b} $B4X?t$N7W;;(B +\EG :: Computes the global @var{b} function of a polynomial or an ideal +@item ann(@var{f}) +@itemx ann0(@var{f}) +\JP :: $BB?9`<0$N%Y%-$N(B annihilator $B$N7W;;(B +\EG :: Computes the annihilator of a power of polynomial +@end table +@table @var +@item return +\JP $BB?9`<0$^$?$O%j%9%H(B +\EG polynomial or list +@item f +\JP $BB?9`<0(B +\EG polynomial +@item plist +\JP $BB?9`<0%j%9%H(B +\EG list of polynomials +@item vlist dvlist +\JP $BJQ?t%j%9%H(B +\EG list of variables +@end table + +@itemize @bullet +\BJP +@item @samp{bfct} $B$GDj5A$5$l$F$$$k(B. +@item @code{bfunction(@var{f})}, @code{bfct(@var{f})} $B$OB?9`<0(B @var{f} $B$N(B global @var{b} $B4X?t(B @code{b(s)} $B$r(B +$B7W;;$9$k(B. @code{b(s)} $B$O(B, Weyl $BBe?t(B @code{D} $B>e$N0lJQ?tB?9`<04D(B @code{D[s]} +$B$N85(B @code{P(x,s)} $B$,B8:_$7$F(B, @code{P(x,s)f^(s+1)=b(s)f^s} $B$rK~$?$9$h$&$J(B +$BB?9`<0(B @code{b(s)} $B$NCf$G(B, $B.@0?t:,(B, +@var{list} $B$O(B @code{ann(@var{f})} $B$N7k2L$N(B @code{s}$ $B$K(B, @var{a} $B$r(B +$BBeF~$7$?$b$N$G$"$k(B. +@item $B>\:Y$K$D$$$F$O(B, [Saito,Sturmfels,Takayama] $B$r8+$h(B. +\E +\BEG +@item These functions are defined in @samp{bfct}. +@item @code{bfunction(@var{f})} and @code{bfct(@var{f})} compute the global @var{b}-function @code{b(s)} of +a polynomial @var{f}. +@code{b(s)} is a polynomial of the minimal degree +such that there exists @code{P(x,s)} in D[s], which is a polynomial +ring over Weyl algebra @code{D}, and @code{P(x,s)f^(s+1)=b(s)f^s} holds. +@item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})} +computes the global @var{b}-function of a left ideal @code{I} in @code{D} +generated by @var{plist}, with respect to @var{weight}. +@var{vlist} is the list of @code{x}-variables, +@var{vlist} is the list of corresponding @code{D}-variables. +@item @code{bfunction(@var{f})} and @code{bfct(@var{f})} implement +different algorithms and the efficiency depends on inputs. +@item @code{ann(@var{f})} returns the generator set of the annihilator +ideal of @code{@var{f}^s}. +@code{ann(@var{f})} returns a list @code{[@var{a},@var{list}]}, +where @var{a} is the minimal integral root of the global @var{b}-function +of @var{f}, and @var{list} is a list of polynomials obtained by +substituting @code{s} in @code{ann(@var{f})} with @var{a}. +@item See [Saito,Sturmfels,Takayama] for the details. +\E +@end itemize + +@example +[0] load("bfct")$ +[216] bfunction(x^3+y^3+z^3+x^2*y^2*z^2+x*y*z); +-9*s^5-63*s^4-173*s^3-233*s^2-154*s-40 +[217] fctr(@@); +[[-1,1],[s+2,1],[3*s+4,1],[3*s+5,1],[s+1,2]] +[218] F = [4*x^3*dt+y*z*dt+dx,x*z*dt+4*y^3*dt+dy, +x*y*dt+5*z^4*dt+dz,-x^4-z*y*x-y^4-z^5+t]$ +[219] generic_bfct(F,[t,z,y,x],[dt,dz,dy,dx],[1,0,0,0]); +20000*s^10-70000*s^9+101750*s^8-79375*s^7+35768*s^6-9277*s^5 ++1278*s^4-72*s^3 +[220] P=x^3-y^2$ +[221] ann(P); +[2*dy*x+3*dx*y^2,-3*dx*x-2*dy*y+6*s] +[222] ann0(P); +[-1,[2*dy*x+3*dx*y^2,-3*dx*x-2*dy*y-6]] +@end example + +@table @t +\JP @item $B;2>H(B +\EG @item References +\JP @fref{Weyl $BBe?t(B}. +\EG @fref{Weyl algebra}. +@end table