=================================================================== RCS file: /home/cvs/OpenXM/src/asir-doc/parts/groebner.texi,v retrieving revision 1.20 retrieving revision 1.24 diff -u -p -r1.20 -r1.24 --- OpenXM/src/asir-doc/parts/groebner.texi 2017/08/31 04:54:36 1.20 +++ OpenXM/src/asir-doc/parts/groebner.texi 2020/09/01 09:25:32 1.24 @@ -1,4 +1,4 @@ -@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.19 2016/08/29 04:56:58 noro Exp $ +@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.23 2019/09/13 09:31:00 noro Exp $ \BJP @node $B%0%l%V%J4pDl$N7W;;(B,,, Top @chapter $B%0%l%V%J4pDl$N7W;;(B @@ -19,6 +19,7 @@ * $BM-M}<0$r78?t$H$9$k%0%l%V%J4pDl7W;;(B:: * $B4pDlJQ49(B:: * Weyl $BBe?t(B:: +* $BB?9`<04D>e$N2C72(B:: * $B%0%l%V%J4pDl$K4X$9$kH!?t(B:: \E \BEG @@ -31,6 +32,7 @@ * Groebner basis computation with rational function coefficients:: * Change of ordering:: * Weyl algebra:: +* Module over a polynomial ring:: * Functions for Groebner basis computation:: \E @end menu @@ -1486,6 +1488,57 @@ Computation of the global b function is implemented as \E \BJP +@node $BB?9`<04D>e$N2C72(B,,, $B%0%l%V%J4pDl$N7W;;(B +@section $BB?9`<04D>e$N2C72(B +\E +\BEG +@node Module over a polynomial ring,,, Groebner basis computation +@section Module over a polynomial ring +\E + +@noindent + +\BJP +$BB?9`<04D>e$N<+M32C72$N85$O(B, $B2C72C19`<0(B te_i $B$N@~7?OB$H$7$FFbItI=8=$5$l$k(B. +$B$3$3$G(B t $B$OB?9`<04D$NC19`<0(B, e_i $B$O<+M32C72$NI8=`4pDl$G$"$k(B. $B2C72C19`<0$O(B, $BB?9`<04D$NC19`<0(B +$B$K0LCV(B i $B$rDI2C$7$?(B @code{<>} $B$GI=$9(B. $B2C72B?9`<0(B, $B$9$J$o$A2C72C19`<0$N@~7?OB$O(B, +$B@_Dj$5$l$F$$$k2C729`=g=x$K$7$?$,$C$F9_=g$K@0Ns$5$l$k(B. $B2C729`=g=x$K$O0J2<$N(B3$B se_j $B$H$J$k$N$O(B t>s $B$^$?$O(B (t=s $B$+$D(B i se_j $B$H$J$k$N$O(B is) $B$H$J$k$h$&$J9`=g=x$G$"$k(B. $B$3$3$G(B, +t, s $B$NHf3S$OB?9`<04D$K@_Dj$5$l$F$$$k=g=x$G9T$&(B. +$B$3$N7?$N=g=x$O(B, @code{dp_ord([1,Ord])} $B$K(B +$B$h$j@_Dj$9$k(B. $B$3$3$G(B, @code{Ord} $B$OB?9`<04D$N=g=x7?$G$"$k(B. + +@item Schreyer $B7?=g=x(B + +$B3FI8=`4pDl(B e_i $B$KBP$7(B, $BJL$N<+M32C72$N2C72C19`<0(B T_i $B$,M?$($i$l$F$$$F(B, te_i > se_j $B$H$J$k$N$O(B +tT_i > sT_j $B$^$?$O(B (tT_i=sT_j $B$+$D(B io:F5"E*$K@_Dj$5$l$k(B. $B$9$J$o$A(B, T_i $B$,=jB0$9$k<+M32C72$N=g=x$b(B Schreyer $B7?(B +$B$G$"$k$+(B, $B$^$?$O%\%H%`$H$J$k(B TOP, POT $B$J$I$N9`=g=x$H$J$k(B. +$B$3$N7?$N=g=x$O(B @code{dpm_set_schreyer([H_1,H_2,...])} $B$K$h$j;XDj$9$k(B. $B$3$3$G(B, +@code{H_i=[T_1,T_2,...]} $B$O2C72C19`<0$N%j%9%H$G(B, @code{[H_2,...]} $B$GDj5A$5$l$k(B Schreyer $B7?9`=g=x$r(B +@code{tT_i} $B$i$KE,MQ$9$k$H$$$&0UL#$G$"$k(B. +@end table + +$B2C72B?9`<0$rF~NO$9$kJ}K!$H$7$F$O(B, @code{<>} $B$J$k7A<0$GD>@\F~NO$9$kB>$K(B, +$BB?9`<0%j%9%H$r:n$j(B, @code{dpm_ltod()} $B$K$h$jJQ49$9$kJ}K!$b$"$k(B. +\E +\BEG +not yet +\E + +\BJP @node $B%0%l%V%J4pDl$K4X$9$kH!?t(B,,, $B%0%l%V%J4pDl$N7W;;(B @section $B%0%l%V%J4pDl$K4X$9$kH!?t(B \E @@ -1503,6 +1556,7 @@ Computation of the global b function is implemented as * dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main:: * dp_f4_main dp_f4_mod_main dp_weyl_f4_main dp_weyl_f4_mod_main:: * nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace:: +* nd_gr_postproc nd_weyl_gr_postproc:: * dp_gr_flags dp_gr_print:: * dp_ord:: * dp_set_weight dp_set_top_weight dp_weyl_set_weight:: @@ -1513,6 +1567,13 @@ Computation of the global b function is implemented as * dp_ptozp dp_prim:: * dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod dp_weyl_nf dp_weyl_nf_mod:: * dp_hm dp_ht dp_hc dp_rest:: +* dpm_hm dpm_ht dpm_hc dpm_hp dpm_rest:: +* dpm_sp:: +* dpm_redble:: +* dpm_nf dpm_nf_and_quotient:: +* dpm_dtol:: +* dpm_ltod:: +* dpm_dptodpm:: * dp_td dp_sugar:: * dp_lcm:: * dp_redble:: @@ -1569,6 +1630,8 @@ Computation of the global b function is implemented as @item $BI8=`%i%$%V%i%j$N(B @samp{gr} $B$GDj5A$5$l$F$$$k(B. @item +gr $B$rL>A0$K4^$`4X?t$O8=:_%a%s%F$5$l$F$$$J$$(B. @code{nd_gr}$B7O$N4X?t$rBe$o$j$KMxMQ$9$Y$-$G$"$k(B(@fref{nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace}). +@item $B$$$:$l$b(B, $BB?9`<0%j%9%H(B @var{plist} $B$N(B, $BJQ?t=g=x(B @var{vlist}, $B9`=g=x7?(B @var{order} $B$K4X$9$k%0%l%V%J4pDl$r5a$a$k(B. @code{gr()}, @code{hgr()} $B$O(B $BM-M}?t78?t(B, @code{gr_mod()} $B$O(B GF(@var{p}) $B78?t$H$7$F7W;;$9$k(B. @@ -1600,6 +1663,9 @@ CPU $B;~4V$G$"$j(B, $B$3$NH!?t$N>l9g$O$[$H$s$IDL?.$ @item These functions are defined in @samp{gr} in the standard library directory. +@item +Functions of which names contains gr are obsolted. +Functions of @code{nd_gr} families should be used (@fref{nd_gr nd_gr_trace nd_f4 nd_f4_trace nd_weyl_gr nd_weyl_gr_trace}). @item They compute a Groebner basis of a polynomial list @var{plist} with respect to the variable order @var{vlist} and the order type @var{order}. @@ -2354,12 +2420,12 @@ except for lack of the argument for controlling homoge @findex nd_weyl_gr_trace @table @t -@item nd_gr(@var{plist},@var{vlist},@var{p},@var{order}) -@itemx nd_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}) -@itemx nd_f4(@var{plist},@var{vlist},@var{modular},@var{order}) -@itemx nd_f4_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}) -@itemx nd_weyl_gr(@var{plist},@var{vlist},@var{p},@var{order}) -@itemx nd_weyl_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}) +@item nd_gr(@var{plist},@var{vlist},@var{p},@var{order}[|@var{option=value,...}]) +@itemx nd_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}[|@var{option=value,...}]) +@itemx nd_f4(@var{plist},@var{vlist},@var{modular},@var{order}[|@var{option=value,...}]) +@itemx nd_f4_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}[|@var{option=value,...}]) +@itemx nd_weyl_gr(@var{plist},@var{vlist},@var{p},@var{order}[|@var{option=value,...}]) +@itemx nd_weyl_gr_trace(@var{plist},@var{vlist},@var{homo},@var{p},@var{order}[|@var{option=value,...}]) \JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) \EG :: Groebner basis computation (built-in functions) @end table @@ -2418,6 +2484,16 @@ Buchberger $B%"%k%4%j%:%`$re$N>l9g82Cx$G$"$k(B. +@item +$B0J2<$N%*%W%7%g%s$,;XDj$G$-$k(B. +@table @code +@item homo +1 $B$N$H$-(B, $B@Fl9g$K$O2C72B?9`<0(B) $B$r7k2L$H$7$FJV$9(B. +@item nora +1 $B$N$H$-(B, $B7k2L$NAj8_4JLs$r9T$o$J$$(B. +@end table @end itemize \E @@ -2461,6 +2537,17 @@ Functions except for F4 related ones can handle ration @item In general these functions are more efficient than @code{dp_gr_main}, @code{dp_gr_mod_main}, especially over finite fields. +@item +The fallowing options can be specified. +@table @code +@item homo +If set to 1, the computation is done via homogenization. (only for @code{nd_gr} and @code{nd_f4}) +@item dp +If set to 1, the functions return a list of distributed polynomials (a list of +module polynomials when the input is a sub-module). +@item nora +If set to 1, the inter-reduction is not performed. +@end table @end itemize \E @@ -2489,6 +2576,67 @@ ndv_alloc=1477188 \EG @fref{Controlling Groebner basis computations} @end table +\JP @node nd_gr_postproc nd_weyl_gr_postproc,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B +\EG @node nd_gr_postproc nd_weyl_gr_postproc,,, Functions for Groebner basis computation +@subsection @code{nd_gr_postproc}, @code{nd_weyl_gr_postproc} +@findex nd_gr_postproc +@findex nd_weyl_gr_postproc + +@table @t +@item nd_gr_postproc(@var{plist},@var{vlist},@var{p},@var{order},@var{check}) +@itemx nd_weyl_gr_postproc(@var{plist},@var{vlist},@var{p},@var{order},@var{check}) +\JP :: $B%0%l%V%J4pDl8uJd$N%A%'%C%/$*$h$SAj8_4JLs(B +\EG :: Check of Groebner basis candidate and inter-reduction +@end table + +@table @var +@item return +\JP $B%j%9%H(B $B$^$?$O(B 0 +\EG list or 0 +@item plist vlist +\JP $B%j%9%H(B +\EG list +@item p +\JP $BAG?t$^$?$O(B 0 +\EG prime or 0 +@item order +\JP $B?t(B, $B%j%9%H$^$?$O9TNs(B +\EG number, list or matrix +@item check +\JP 0 $B$^$?$O(B 1 +\EG 0 or 1 +@end table + +@itemize @bullet +\BJP +@item +$B%0%l%V%J4pDl(B($B8uJd(B)$B$NAj8_4JLs$r9T$&(B. +@item +@code{nd_weyl_gr_postproc} $B$O(B Weyl $BBe?tMQ$G$"$k(B. +@item +@var{check=1} $B$N>l9g(B, @var{plist} $B$,(B, @var{vlist}, @var{p}, @var{order} $B$G;XDj$5$l$kB?9`<04D(B, $B9`=g=x$G%0%l%V%J!<4pDl$K$J$C$F$$$k$+(B +$B$N%A%'%C%/$b9T$&(B. +@item +$B@Fl9g$KMQ$$$k(B. +\E +\BEG +@item +Perform the inter-reduction for a Groebner basis (candidate). +@item +@code{nd_weyl_gr_postproc} is for Weyl algebra. +@item +If @var{check=1} then the check whether @var{plist} is a Groebner basis with respect to a term order in a polynomial ring +or Weyl algebra specified by @var{vlist}, @var{p} and @var{order}. +@item +This function is used for inter-reduction of a non-reduced Groebner basis that is obtained by dehomogenizing a Groebner basis +computed via homogenization, or Groebner basis check of a Groebner basis candidate computed by CRT. +\E +@end itemize + +@example +afo +@end example + \JP @node dp_gr_flags dp_gr_print,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B \EG @node dp_gr_flags dp_gr_print,,, Functions for Groebner basis computation @subsection @code{dp_gr_flags}, @code{dp_gr_print} @@ -2619,6 +2767,12 @@ uses the value as a flag for showing intermediate info @item $B%H%C%W%l%Y%kH!?t0J30$NH!?t$rD>@\8F$S=P$9>l9g$K$O(B, $B$3$NH!?t$K$h$j(B $BJQ?t=g=x7?$r@5$7$/@_Dj$7$J$1$l$P$J$i$J$$(B. + +@item +$B0z?t$,%j%9%H$N>l9g(B, $B<+M32C72$K$*$1$k9`=g=x7?$r@_Dj$9$k(B. $B0z?t$,(B@code{[0,Ord]} $B$N>l9g(B, +$BB?9`<04D>e$G(B @code{Ord} $B$G;XDj$5$l$k9`=g=x$K4p$E$/(B TOP $B=g=x(B, $B0z?t$,(B @code{[1,Ord]} $B$N>l9g(B +OPT $B=g=x$r@_Dj$9$k(B. + \E \BEG @item @@ -2646,6 +2800,12 @@ that such polynomials were generated under the same or @item Type of term ordering must be correctly set by this function when functions other than top level functions are called directly. + +@item +If the argument is a list, then an ordering type in a free module is set. +If the argument is @code{[0,Ord]} then a TOP ordering based on the ordering type specified +by @code{Ord} is set. +If the argument is @code{[1,Ord]} then a POT ordering is set. \E @end itemize @@ -2797,6 +2957,171 @@ the coefficient field. @fref{dp_ord}. @end table +\JP @node dpm_dptodpm,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B +\EG @node dpm_dptodpm,,, Functions for Groebner basis computation +@subsection @code{dpm_dptodpm} +@findex dpm_dptodpm + +@table @t +@item dpm_dptodpm(@var{dpoly},@var{pos}) +\JP :: $BJ,;6I=8=B?9`<0$r2C72B?9`<0$KJQ49$9$k(B. +\EG :: Converts a distributed polynomial into a module polynomial. +@end table + +@table @var +@item return +\JP $B2C72B?9`<0(B +\EG module polynomial +@item dpoly +\JP $BJ,;6I=8=B?9`<0(B +\EG distributed polynomial +@item pos +\JP $B@5@0?t(B +\EG positive integer +@end table + +@itemize @bullet +\BJP +@item +$BJ,;6I=8=B?9`<0$r2C72B?9`<0$KJQ49$9$k(B. +@item +$B=PNO$O2C72B?9`<0(B @code{dpoly e_pos} $B$G$"$k(B. +\E +\BEG +@item +This function converts a distributed polynomial into a module polynomial. +@item +The output is @code{dpoly e_pos}. +\E +@end itemize + +@example +[50] dp_ord([0,0])$ +[51] D=dp_ptod((x+y+z)^2,[x,y,z]); +(1)*<<2,0,0>>+(2)*<<1,1,0>>+(1)*<<0,2,0>>+(2)*<<1,0,1>>+(2)*<<0,1,1>> ++(1)*<<0,0,2>> +[52] dp_dptodpm(D,2); +(1)*<<2,0,0:2>>+(2)*<<1,1,0:2>>+(1)*<<0,2,0:2>>+(2)*<<1,0,1:2>> ++(2)*<<0,1,1:2>>+(1)*<<0,0,2:2>> +@end example + +@table @t +\JP @item $B;2>H(B +\EG @item References +@fref{dp_ptod}, +@fref{dp_ord}. +@end table + +\JP @node dpm_ltod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B +\EG @node dpm_ltod,,, Functions for Groebner basis computation +@subsection @code{dpm_ltod} +@findex dpm_ltod + +@table @t +@item dpm_dptodpm(@var{plist},@var{vlist}) +\JP :: $BB?9`<0%j%9%H$r2C72B?9`<0$KJQ49$9$k(B. +\EG :: Converts a list of polynomials into a module polynomial. +@end table + +@table @var +@item return +\JP $B2C72B?9`<0(B +\EG module polynomial +@item plist +\JP $BB?9`<0%j%9%H(B +\EG list of polynomials +@item vlist +\JP $BJQ?t%j%9%H(B +\EG list of variables +@end table + +@itemize @bullet +\BJP +@item +$BB?9`<0%j%9%H$r2C72B?9`<0$KJQ49$9$k(B. +@item +@code{[p1,...,pm]} $B$O(B @code{p1 e1+...+pm em} $B$KJQ49$5$l$k(B. +\E +\BEG +@item +This function converts a list of polynomials into a module polynomial. +@item +@code{[p1,...,pm]} is converted into @code{p1 e1+...+pm em}. +\E +@end itemize + +@example +[2126] dp_ord([0,0])$ +[2127] dpm_ltod([x^2+y^2,x,y-z],[x,y,z]); +(1)*<<2,0,0:1>>+(1)*<<0,2,0:1>>+(1)*<<1,0,0:2>>+(1)*<<0,1,0:3>> ++(-1)*<<0,0,1:3>> +@end example + +@table @t +\JP @item $B;2>H(B +\EG @item References +@fref{dpm_dtol}, +@fref{dp_ord}. +@end table + +\JP @node dpm_dtol,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B +\EG @node dpm_dtol,,, Functions for Groebner basis computation +@subsection @code{dpm_dtol} +@findex dpm_dtol + +@table @t +@item dpm_dptodpm(@var{poly},@var{vlist}) +\JP :: $B2C72B?9`<0$rB?9`<0%j%9%H$KJQ49$9$k(B. +\EG :: Converts a module polynomial into a list of polynomials. +@end table + +@table @var +@item return +\JP $BB?9`<0%j%9%H(B +\EG list of polynomials +@item poly +\JP $B2C72B?9`<0(B +\EG module polynomial +@item vlist +\JP $BJQ?t%j%9%H(B +\EG list of variables +@end table + +@itemize @bullet +\BJP +@item +$B2C72B?9`<0$rB?9`<0%j%9%H$KJQ49$9$k(B. +@item +@code{p1 e1+...+pm em} $B$O(B @code{[p1,...,pm]} $B$KJQ49$5$l$k(B. +@item +$B=PNO%j%9%H$ND9$5$O(B, @code{poly} $B$K4^$^$l$kI8=`4pDl$N:GBg%$%s%G%C%/%9$H$J$k(B. +\E +\BEG +@item +This function converts a module polynomial into a list of polynomials. +@item +@code{p1 e1+...+pm em} is converted into @code{[p1,...,pm]}. +@item +The length of the output list is equal to the largest index among those of the standard bases +containd in @code{poly}. +\E +@end itemize + +@example +[2126] dp_ord([0,0])$ +[2127] D=(1)*<<2,0,0:1>>+(1)*<<0,2,0:1>>+(1)*<<1,0,0:2>>+(1)*<<0,1,0:3>> ++(-1)*<<0,0,1:3>>$ +[2128] dpm_dtol(D,[x,y,z]); +[x^2+y^2,x,y-z] +@end example + +@table @t +\JP @item $B;2>H(B +\EG @item References +@fref{dpm_ltod}, +@fref{dp_ord}. +@end table + \JP @node dp_dtop,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B \EG @node dp_dtop,,, Functions for Groebner basis computation @subsection @code{dp_dtop} @@ -3227,6 +3552,126 @@ u4^2+(6*u3+2*u2+6*u1-2)*u4+9*u3^2+(6*u2+18*u1-6)*u3+u2 @fref{p_nf p_nf_mod p_true_nf p_true_nf_mod}. @end table +\JP @node dpm_nf dpm_nf_and_quotient,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B +\EG @node dpm_nf dpm_nf_and_quotient,,, Functions for Groebner basis computation +@subsection @code{dpm_nf}, @code{dpm_nf_and_quotient} +@findex dpm_nf +@findex dpm_nf_and_quotient + +@table @t +@item dpm_nf([@var{indexlist},]@var{dpoly},@var{dpolyarray},@var{fullreduce}) +\JP :: $B2C72B?9`<0$N@55,7A$r5a$a$k(B. ($B7k2L$ODj?tG\$5$l$F$$$k2DG=@-$"$j(B) + +\BEG +:: Computes the normal form of a module polynomial. +(The result may be multiplied by a constant in the ground field.) +\E +@item dpm_nf_and_quotient([@var{indexlist},]@var{dpoly},@var{dpolyarray}) +\JP :: $B2C72B?9`<0$N@55,7A$H>&$r5a$a$k(B. +\BEG +:: Computes the normal form of a module polynomial and the quotient. +\E +@end table + +@table @var +@item return +\JP @code{dpm_nf()} : $B2C72B?9`<0(B, @code{dpm_nf_and_quotient()} : $B%j%9%H(B +\EG @code{dpm_nf()} : module polynomial, @code{dpm_nf_and_quotient()} : list +@item indexlist +\JP $B%j%9%H(B +\EG list +@item dpoly +\JP $B2C72B?9`<0(B +\EG module polynomial +@item dpolyarray +\JP $BG[Ns(B +\EG array of module polynomial +@end table + +@itemize @bullet +\BJP +@item +$B2C72B?9`<0(B @var{dpoly} $B$N@55,7A$r5a$a$k(B. +@item +$B7k2L$KM-M}?t(B, $BM-M}<0$,4^$^$l$k$N$rHr$1$k$?$a(B, @code{dpm_nf()} $B$O(B +$B??$NCM$NDj?tG\$NCM$rJV$9(B. +@item +@var{dpolyarray} $B$O2C72B?9`<0$rMWAG$H$9$k%Y%/%H%k(B, +@var{indexlist} $B$O@55,2=7W;;$KMQ$$$k(B @var{dpolyarray} $B$NMWAG$N%$%s%G%C%/%9(B +@item +@var{indexlist} $B$,M?$($i$l$F$$$k>l9g(B, @var{dpolyarray} $B$NCf$G(B, @var{indexlist} $B$G;XDj$5$l$?$b$N$N$_$,(B, $BA0$NJ}$+$iM%@hE*$K;H$o$l$k(B. +@var{indexlist} $B$,M?$($i$l$F$$$J$$>l9g$K$O(B, @var{dpolyarray} $B$NCf$NA4$F$NB?9`<0$,A0$NJ}$+$iM%@hE*$K;H$o$l$k(B. +@item +@code{dpm_nf_and_quotient()} $B$O(B, +@code{[@var{nm},@var{dn},@var{quo}]} $B$J$k7A$N%j%9%H$rJV$9(B. +$B$?$@$7(B, @var{nm} $B$O78?t$KJ,?t$r4^$^$J$$2C72B?9`<0(B, @var{dn} $B$O(B +$B?t$^$?$OB?9`<0$G(B @var{nm}/@var{dn} $B$,??$NCM$H$J$k(B. +@var{quo} $B$O=|;;$N>&$rI=$9G[Ns$G(B, @var{dn}@var{dpoly}=@var{nm}+@var{quo[0]dpolyarray[0]+...} $B$,@.$jN)$D(B. +$B$N%j%9%H(B. +@item +@var{fullreduce} $B$,(B 0 $B$G$J$$$H$-A4$F$N9`$KBP$7$F4JLs$r9T$&(B. @var{fullreduce} +$B$,(B 0 $B$N$H$-F,9`$N$_$KBP$7$F4JLs$r9T$&(B. +\E +\BEG +@item +Computes the normal form of a module polynomial. +@item +The result of @code{dpm_nf()} may be multiplied by a constant in the +ground field in order to make the result integral. +@item +@var{dpolyarray} is a vector whose components are module polynomials +and @var{indexlist} is a list of indices which is used for the normal form +computation. +@item +If @var{indexlist} is given, only the polynomials in @var{dpolyarray} specified in @var{indexlist} +is used in the division. An index placed at the preceding position has priority to be selected. +If @var{indexlist} is not given, all the polynomials in @var{dpolyarray} are used. +@item +@code{dpm_nf_and_quotient()} returns +such a list as @code{[@var{nm},@var{dn},@var{quo}]}. +Here @var{nm} is a module polynomial whose coefficients are integral +in the ground field, @var{dn} is an integral element in the ground +field and @var{nm}/@var{dn} is the true normal form. +@var{quo} is an array containing the quotients of the division satisfying +@var{dn}@var{dpoly}=@var{nm}+@var{quo[0]dpolyarray[0]+...}. +@item +When argument @var{fullreduce} has non-zero value, +all terms are reduced. When it has value 0, +only the head term is reduced. +\E +@end itemize + +@example +[2126] dp_ord([1,0])$ +[2127] S=ltov([(1)*<<0,0,2,0:1>>+(1)*<<0,0,1,1:1>>+(1)*<<0,0,0,2:1>> ++(-1)*<<3,0,0,0:2>>+(-1)*<<0,0,2,1:2>>+(-1)*<<0,0,1,2:2>> ++(1)*<<3,0,1,0:3>>+(1)*<<3,0,0,1:3>>+(1)*<<0,0,2,2:3>>, +(-1)*<<0,1,0,0:1>>+(-1)*<<0,0,1,0:1>>+(-1)*<<0,0,0,1:1>> ++(-1)*<<3,0,0,0:3>>+(1)*<<0,1,1,1:3>>,(1)*<<0,1,0,0:2>> ++(1)*<<0,0,1,0:2>>+(1)*<<0,0,0,1:2>>+(-1)*<<0,1,1,0:3>> ++(-1)*<<0,1,0,1:3>>+(-1)*<<0,0,1,1:3>>])$ +[2128] U=dpm_sp(S[0],S[1]); +(1)*<<0,0,3,0:1>>+(-1)*<<0,1,1,1:1>>+(1)*<<0,0,2,1:1>> ++(-1)*<<0,1,0,2:1>>+(1)*<<3,1,0,0:2>>+(1)*<<0,1,2,1:2>> ++(1)*<<0,1,1,2:2>>+(-1)*<<3,1,1,0:3>>+(1)*<<3,0,2,0:3>> ++(-1)*<<3,1,0,1:3>>+(-1)*<<0,1,3,1:3>>+(-1)*<<0,1,2,2:3>> +[2129] dpm_nf(U,S,1); +0 +[2130] L=dpm_nf_and_quotient(U,S)$ +[2131] Q=L[2]$ +[2132] D=L[1]$ +[2133] D*U-(Q[1]*S[1]+Q[2]*S[2]); +0 +@end example + +@table @t +\JP @item $B;2>H(B +\EG @item References +@fref{dpm_sp}, +@fref{dp_ord}. +@end table + + \JP @node dp_hm dp_ht dp_hc dp_rest,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B \EG @node dp_hm dp_ht dp_hc dp_rest,,, Functions for Groebner basis computation @subsection @code{dp_hm}, @code{dp_ht}, @code{dp_hc}, @code{dp_rest} @@ -3301,6 +3746,88 @@ The next equations hold for a distributed polynomial @ +(-490)*<<0,0,0>> @end example +\JP @node dpm_hm dpm_ht dpm_hc dpm_hp dpm_rest,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B +\EG @node dpm_hm dpm_ht dpm_hc dpm_hp dpm_rest,,, Functions for Groebner basis computation +@subsection @code{dpm_hm}, @code{dpm_ht}, @code{dpm_hc}, @code{dpm_hp}, @code{dpm_rest} +@findex dpm_hm +@findex dpm_ht +@findex dpm_hc +@findex dpm_hp +@findex dpm_rest + +@table @t +@item dpm_hm(@var{dpoly}) +\JP :: $B2C72B?9`<0$NF,C19`<0$r>-3*<<1,0,2:3>>+<<2,1,0:2>>; +(1)*<<2,1,0:2>>+(2)*<<1,2,0:2>>+(-3)*<<1,0,2:3>> +[2128] M=dpm_hm(F); +(1)*<<2,1,0:2>> +[2129] C=dpm_hc(F); +(1)*<<2,1,0>> +[2130] R=dpm_rest(F); +(2)*<<1,2,0:2>>+(-3)*<<1,0,2:3>> +[2131] dpm_hp(F); +2 +@end example + + \JP @node dp_td dp_sugar,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B \EG @node dp_td dp_sugar,,, Functions for Groebner basis computation @subsection @code{dp_td}, @code{dp_sugar} @@ -3462,6 +3989,43 @@ Used for finding candidate terms at reduction of polyn @fref{dp_red dp_red_mod}. @end table +\JP @node dpm_redble,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B +\EG @node dpm_redble,,, Functions for Groebner basis computation +@subsection @code{dpm_redble} +@findex dpm_redble + +@table @t +@item dpm_redble(@var{dpoly1},@var{dpoly2}) +\JP :: $BF,9`$I$&$7$,@0=|2DG=$+$I$&$+D4$Y$k(B. +\EG :: Checks whether one head term is divisible by the other head term. +@end table + +@table @var +@item return +\JP $B@0?t(B +\EG integer +@item dpoly1 dpoly2 +\JP $B2C72B?9`<0(B +\EG module polynomial +@end table + +@itemize @bullet +\BJP +@item +@var{dpoly1} $B$NF,9`$,(B @var{dpoly2} $B$NF,9`$G3d$j@Z$l$l$P(B 1, $B3d$j@Z$l$J$1$l$P(B +0 $B$rJV$9(B. +@item +$BB?9`<0$N4JLs$r9T$&:](B, $B$I$N9`$r4JLs$G$-$k$+$rC5$9$N$KMQ$$$k(B. +\E +\BEG +@item +Returns 1 if the head term of @var{dpoly2} divides the head term of +@var{dpoly1}; otherwise 0. +@item +Used for finding candidate terms at reduction of polynomials. +\E +@end itemize + \JP @node dp_subd,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B \EG @node dp_subd,,, Functions for Groebner basis computation @subsection @code{dp_subd} @@ -3829,6 +4393,46 @@ make the result integral. \EG @item References @fref{dp_mod dp_rat}. @end table + +\JP @node dpm_sp,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B +\EG @node dmp_sp,,, Functions for Groebner basis computation +@subsection @code{dpm_sp} +@findex dpm_sp + +@table @t +@item dpm_sp(@var{dpoly1},@var{dpoly2}[|coef=1]) +\JP :: S-$BB?9`<0$N7W;;(B +\EG :: Computation of an S-polynomial +@end table + +@table @var +@item return +\JP $B2C72B?9`<0$^$?$O%j%9%H(B +\EG module polynomial or list +@item dpoly1 dpoly2 +\JP $B2C72B?9`<0(B +\EG module polynomial +\JP $BJ,;6I=8=B?9`<0(B +@end table + +@itemize @bullet +\BJP +@item +@var{dpoly1}, @var{dpoly2} $B$N(B S-$BB?9`<0$r7W;;$9$k(B. +@item +$B%*%W%7%g%s(B @var{coef=1} $B$,;XDj$5$l$F$$$k>l9g(B, @code{[S,t1,t2]} $B$J$k%j%9%H$rJV$9(B. +$B$3$3$G(B, @code{t1}, @code{t2} $B$O(BS-$BB?9`<0$r:n$k:]$N78?tC19`<0$G(B @code{S=t1 dpoly1-t2 dpoly2} +$B$rK~$?$9(B. +\E +\BEG +@item +This function computes the S-polynomial of @var{dpoly1} and @var{dpoly2}. +@item +If an option @var{coef=1} is specified, it returns a list @code{[S,t1,t2]}, +where @code{S} is the S-polynmial and @code{t1}, @code{t2} are monomials satisfying @code{S=t1 dpoly1-t2 dpoly2}. +\E +@end itemize + \JP @node p_nf p_nf_mod p_true_nf p_true_nf_mod,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B \EG @node p_nf p_nf_mod p_true_nf p_true_nf_mod,,, Functions for Groebner basis computation @subsection @code{p_nf}, @code{p_nf_mod}, @code{p_true_nf}, @code{p_true_nf_mod}