=================================================================== RCS file: /home/cvs/OpenXM/src/asir-doc/parts/groebner.texi,v retrieving revision 1.12 retrieving revision 1.13 diff -u -p -r1.12 -r1.13 --- OpenXM/src/asir-doc/parts/groebner.texi 2003/12/27 11:52:07 1.12 +++ OpenXM/src/asir-doc/parts/groebner.texi 2004/09/13 09:23:30 1.13 @@ -1,4 +1,4 @@ -@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.11 2003/04/28 06:43:10 noro Exp $ +@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.12 2003/12/27 11:52:07 takayama Exp $ \BJP @node グレブナ基底の計算,,, Top @chapter グレブナ基底の計算 @@ -15,6 +15,7 @@ * 基本的な函数:: * 計算および表示の制御:: * 項順序の設定:: +* Weight:: * 有理式を係数とするグレブナ基底計算:: * 基底変換:: * Weyl 代数:: @@ -26,6 +27,7 @@ * Fundamental functions:: * Controlling Groebner basis computations:: * Setting term orderings:: +* Weight:: * Groebner basis computation with rational function coefficients:: * Change of ordering:: * Weyl algebra:: @@ -1052,6 +1054,84 @@ expressed by variable @code{x}, and the above explanat such a drastic experimental results. In practice, however, optimum ordering for variables may not known beforehand, and some heuristic trial may be inevitable. +\E + +\BJP +@node Weight ,,, グレブナ基底の計算 +@section Weight +\E +\BEG +@node Weight,,, Groebner basis computation +@section Weight +\E +\BJP +前節で紹介した項順序は, 各変数に weight (重み) を設定することで +より一般的なものとなる. +\E +\BEG +Term orders introduced in the previous section can be generalized +by setting a weight for each variable. +\E +@example +[0] dp_td(<<1,1,1>>); +3 +[1] dp_set_weight([1,2,3])$ +[2] dp_td(<<1,1,1>>); +6 +@end example +\BJP +単項式の全次数を計算する際, デフォルトでは +各変数の指数の和を全次数とする. これは各変数の weight を 1 と +考えていることに相当する. この例では, 第一, 第二, 第三変数の +weight をそれぞれ 1,2,3 と指定している. このため, @code{<<1,1,1>>} +の全次数 (以下ではこれを単項式の weight と呼ぶ) が @code{1*1+1*2+1*3=6} となる. +weight を設定することで, 同じ項順序型のもとで異なる項順序が定義できる. +例えば, weight をうまく設定することで, 多項式を weighted homogeneous +にすることができる場合がある. +\E +\BEG +By default, the total degree of a monomial is equal to +the sum of all exponents. This means that the weight for each variable +is set to 1. +In this example, the weights for the first, the second and the third +variable are set to 1, 2 and 3 respectively. +Therefore the total degree of @code{<<1,1,1>>} under this weight, +which is called the weight of the monomial, is @code{1*1+1*2+1*3=6}. +By setting weights, different term orders can be set under a term +order type. For example, a polynomial can be made weighted homogeneous +by setting an appropriate weight. +\E + +\BJP +各変数に対する weight をまとめたものを weight vector と呼ぶ. +すべての成分が正であり, グレブナ基底計算において, 全次数の +代わりに用いられるものを特に sugar weight と呼ぶことにする. +sugar strategy において, 全次数の代わりに使われるからである. +一方で, 各成分が必ずしも正とは限らない weight vector は, +sugar weight として設定することはできないが, 項順序の一般化には +有用である. これらは, 行列による項順序の設定にすでに現れて +いる. すなわち, 項順序を定義する行列の各行が, 一つの weight vector +と見なされる. また, ブロック順序は, 各ブロックの +変数に対応する成分のみ 1 で他は 0 の weight vector による比較を +最初に行ってから, 各ブロック毎の tie breaking を行うことに相当する. +\E + +\BEG +A list of weights for all variables is called a weight vector. +A weight vector is called a sugar weight vector if +its elements are all positive and it is used for computing +a weighted total degree of a monomial, because such a weight +is used instead of total degree in sugar strategy. +On the other hand, a weight vector whose elements are not necessarily +positive cannot be set as a sugar weight, but it is useful for +generalizing term order. In fact, such a weight vector already +appeared in a matrix order. That is, each row of a matrix defining +a term order is regarded as a weight vector. A block order +is also considered as a refinement of comparison by weight vectors. +It compares two terms by using a weight vector whose elements +corresponding to variables in a block is 1 and 0 otherwise, +then it applies a tie breaker. + \E \BJP