=================================================================== RCS file: /home/cvs/OpenXM/src/asir-doc/parts/groebner.texi,v retrieving revision 1.5 retrieving revision 1.6 diff -u -p -r1.5 -r1.6 --- OpenXM/src/asir-doc/parts/groebner.texi 2003/04/20 08:01:25 1.5 +++ OpenXM/src/asir-doc/parts/groebner.texi 2003/04/20 09:55:18 1.6 @@ -1,4 +1,4 @@ -@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.4 2003/04/19 15:44:56 noro Exp $ +@comment $OpenXM: OpenXM/src/asir-doc/parts/groebner.texi,v 1.5 2003/04/20 08:01:25 noro Exp $ \BJP @node $B%0%l%V%J4pDl$N7W;;(B,,, Top @chapter $B%0%l%V%J4pDl$N7W;;(B @@ -1203,6 +1203,105 @@ Refer to the sections for each functions. \E \BJP +@node Weyl $BBe?t(B,,, $B%0%l%V%J4pDl$N7W;;(B +@section Weyl $BBe?t(B +\E +\BEG +@node Weyl algebra,,, Groebner basis computation +@section Weyl algebra +\E + +@noindent + +\BJP +$B$3$l$^$G$O(B, $BDL>o$N2D49$JB?9`<04D$K$*$1$k%0%l%V%J4pDl7W;;$K$D$$$F(B +$B=R$Y$F$-$?$,(B, $B%0%l%V%J4pDl$NM}O@$O(B, $B$"$k>r7o$rK~$?$9Hs2D49$J(B +$B4D$K$b3HD%$G$-$k(B. $B$3$N$h$&$J4D$NCf$G(B, $B1~MQ>e$b=EMW$J(B, +Weyl $BBe?t(B, $B$9$J$o$AB?9`<04D>e$NHyJ,:nMQAG4D$N1i;;$*$h$S(B +$B%0%l%V%J4pDl7W;;$,(B Risa/Asir $B$Ke$N(B @code{n} $B} $B$O(B +\E + +\BEG +So far we have explained Groebner basis computation in +commutative polynomial rings. However Groebner basis can be +considered in more general non-commutative rings. +Weyl algebra is one of such rings and +Risa/Asir implements fundamental operations +in Weyl algebra and Groebner basis computation in Weyl algebra. + +The @code{n} dimensional Weyl algebra over a field @code{K}, +@code{D=K} is a non-commutative +algebra which has the following fundamental relations: +\E + +@code{xi*xj-xj*xi=0}, @code{Di*Dj-Dj*Di=0}, @code{Di*xj-xj*Di=0} (@code{i!=j}), +@code{Di*xi-xi*Di=1} + +\BJP +$B$H$$$&4pK\4X78$r;}$D4D$G$"$k(B. @code{D} $B$O(B $BB?9`<04D(B @code{K[x1,@dots{},xn]} $B$r78?t(B +$B$H$9$kHyJ,:nMQAG4D$G(B, @code{Di} $B$O(B @code{xi} $B$K$h$kHyJ,$rI=$9(B. $B8r494X78$K$h$j(B, +@code{D} $B$N85$O(B, @code{x1^i1*@dots{}*xn^in*D1^j1*@dots{}*Dn^jn} $B$J$kC19`(B +$B<0$N(B @code{K} $B@~7A7k9g$H$7$F=q$-I=$9$3$H$,$G$-$k(B. +Risa/Asir $B$K$*$$$F$O(B, $B$3$NC19`<0$r(B, $B2D49$JB?9`<0$HF1MM$K(B +@code{<>} $B$GI=$9(B. $B$9$J$o$A(B, @code{D} $B$N85$b(B +$BJ,;6I=8=B?9`<0$H$7$FI=$5$l$k(B. $B2C8:;;$O(B, $B2D49$N>l9g$HF1MM$K(B, @code{+}, @code{-} +$B$K$h$j(B +$Bh;;$O(B, $BHs2D49@-$r9MN8$7$F(B @code{dp_weyl_mul()} $B$H$$$&4X?t(B +$B$K$h$j>} as in the case of commutative +polynomial. +That is, elements of @code{D} are represented by distributed polynomials. +Addition and subtraction can be done by @code{+}, @code{-}, +but multiplication is done by calling @code{dp_weyl_mul()} because of +the non-commutativity of @code{D}. +\E + +@example +[0] A=<<1,2,2,1>>; +(1)*<<1,2,2,1>> +[1] B=<<2,1,1,2>>; +(1)*<<2,1,1,2>> +[2] A*B; +(1)*<<3,3,3,3>> +[3] dp_weyl_mul(A,B); +(1)*<<3,3,3,3>>+(1)*<<3,2,3,2>>+(4)*<<2,3,2,3>>+(4)*<<2,2,2,2>> ++(2)*<<1,3,1,3>>+(2)*<<1,2,1,2>> +@end example + +\BJP +$B%0%l%V%J4pDl7W;;$K$D$$$F$b(B, Weyl $BBe?t@lMQ$N4X?t$H$7$F(B, +$BH(B \EG @item References -@comment @fref{dp_gr_main dp_gr_mod_main dp_gr_f_main}, -@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main}, +@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main}, @fref{dp_ord}. @end table @@ -1564,7 +1663,7 @@ processes. @table @t \JP @item $B;2>H(B \EG @item References -@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main}, +@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main}, \JP @fref{dp_ord}, @fref{$BJ,;67W;;(B} \EG @fref{dp_ord}, @fref{Distributed computation} @end table @@ -1842,17 +1941,23 @@ z^32+11405*z^31+20868*z^30+21602*z^29+... @fref{gr_minipoly minipoly}. @end table -\JP @node dp_gr_main dp_gr_mod_main dp_gr_f_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B -\EG @node dp_gr_main dp_gr_mod_main dp_gr_f_main,,, Functions for Groebner basis computation -@subsection @code{dp_gr_main}, @code{dp_gr_mod_main}, @code{dp_gr_f_main} +\JP @node dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B +\EG @node dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main,,, Functions for Groebner basis computation +@subsection @code{dp_gr_main}, @code{dp_gr_mod_main}, @code{dp_gr_f_main}, @code{dp_weyl_gr_main}, @code{dp_weyl_gr_mod_main}, @code{dp_weyl_gr_f_main} @findex dp_gr_main @findex dp_gr_mod_main @findex dp_gr_f_main +@findex dp_weyl_gr_main +@findex dp_weyl_gr_mod_main +@findex dp_weyl_gr_f_main @table @t @item dp_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) @itemx dp_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) @itemx dp_gr_f_main(@var{plist},@var{vlist},@var{homo},@var{order}) +@itemx dp_weyl_gr_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) +@itemx dp_weyl_gr_mod_main(@var{plist},@var{vlist},@var{homo},@var{modular},@var{order}) +@itemx dp_weyl_gr_f_main(@var{plist},@var{vlist},@var{homo},@var{order}) \JP :: $B%0%l%V%J4pDl$N7W;;(B ($BAH$_9~$_H!?t(B) \EG :: Groebner basis computation (built-in functions) @end table @@ -1880,9 +1985,10 @@ z^32+11405*z^31+20868*z^30+21602*z^29+... @item $B$3$l$i$NH!?t$O(B, $B%0%l%V%J4pDl7W;;$N4pK\E*AH$_9~$_H!?t$G$"$j(B, @code{gr()}, @code{hgr()}, @code{gr_mod()} $B$J$I$O$9$Y$F$3$l$i$NH!?t$r8F$S=P$7$F7W;;(B -$B$r9T$C$F$$$k(B. +$B$r9T$C$F$$$k(B. $B4X?tL>$K(B weyl $B$,F~$C$F$$$k$b$N$O(B, Weyl $BBe?t>e$N7W;;(B +$B$N$?$a$N4X?t$G$"$k(B. @item -@code{dp_gr_f_main()} $B$O(B, $Be$N%0%l%V%J4pDl$r7W;;$9$k(B +@code{dp_gr_f_main()}, @code{dp_weyl_f_main()} $B$O(B, $Be$N%0%l%V%J4pDl$r7W;;$9$k(B $B>l9g$KMQ$$$k(B. $BF~NO$O(B, $B$"$i$+$8$a(B, @code{simp_ff()} $B$J$I$G(B, $B9M$($kM-8BBN>e$K'$5$ $B;;K!$G$"$j(B, $BK\jM>DjM}$K$h$k@~7AJ}Dx<05a2r$rMQ$$$?(B $B;n83E*$J$l(B @code{dp_gr_main()}, @code{dp_gr_mod_main()} +$B@F$l(B +@code{dp_gr_main()}, @code{dp_gr_mod_main()}, +@code{dp_weyl_gr_main()}, @code{dp_weyl_gr_mod_main()} $B$HF1MM$G$"$k(B. \E \BEG @@ -2012,7 +2126,9 @@ invented by J.C. Faugere. The current implementation o uses Chinese Remainder theorem and not highly optimized. @item Arguments and actions are the same as those of -@code{dp_gr_main()}, @code{dp_gr_mod_main()}. +@code{dp_gr_main()}, @code{dp_gr_mod_main()}, +@code{dp_weyl_gr_main()}, @code{dp_weyl_gr_mod_main()}, +except for lack of the argument for controlling homogenization. \E @end itemize @@ -3665,105 +3781,6 @@ if an input ideal is not radical. \EG @fref{Setting term orderings}. @end table -\BJP -@node Weyl $BBe?t(B,,, $B%0%l%V%J4pDl$N7W;;(B -@section Weyl $BBe?t(B -\E -\BEG -@node Weyl algebra,,, Groebner basis computation -@section Weyl algebra -\E - -@noindent - -\BJP -$B$3$l$^$G$O(B, $BDL>o$N2D49$JB?9`<04D$K$*$1$k%0%l%V%J4pDl7W;;$K$D$$$F(B -$B=R$Y$F$-$?$,(B, $B%0%l%V%J4pDl$NM}O@$O(B, $B$"$k>r7o$rK~$?$9Hs2D49$J(B -$B4D$K$b3HD%$G$-$k(B. $B$3$N$h$&$J4D$NCf$G(B, $B1~MQ>e$b=EMW$J(B, -Weyl $BBe?t(B, $B$9$J$o$AB?9`<04D>e$NHyJ,:nMQAG4D$N1i;;$*$h$S(B -$B%0%l%V%J4pDl7W;;$,(B Risa/Asir $B$Ke$N(B @code{n} $B} $B$O(B -\E - -\BEG -So far we have explained Groebner basis computation in -commutative polynomial rings. However Groebner basis can be -considered in more general non-commutative rings. -Weyl algebra is one of such rings and -Risa/Asir implements fundamental operations -in Weyl algebra and Groebner basis computation in Weyl algebra. - -The @code{n} dimensional Weyl algebra over a field @code{K}, -@code{D=K} is a non-commutative -algebra which has the following fundamental relations: -\E - -@code{xi*xj-xj*xi=0}, @code{Di*Dj-Dj*Di=0}, @code{Di*xj-xj*Di=0} (@code{i!=j}), -@code{Di*xi-xi*Di=1} - -\BJP -$B$H$$$&4pK\4X78$r;}$D4D$G$"$k(B. @code{D} $B$O(B $BB?9`<04D(B @code{K[x1,@dots{},xn]} $B$r78?t(B -$B$H$9$kHyJ,:nMQAG4D$G(B, @code{Di} $B$O(B @code{xi} $B$K$h$kHyJ,$rI=$9(B. $B8r494X78$K$h$j(B, -@code{D} $B$N85$O(B, @code{x1^i1*@dots{}*xn^in*D1^j1*@dots{}*Dn^jn} $B$J$kC19`(B -$B<0$N(B @code{K} $B@~7A7k9g$H$7$F=q$-I=$9$3$H$,$G$-$k(B. -Risa/Asir $B$K$*$$$F$O(B, $B$3$NC19`<0$r(B, $B2D49$JB?9`<0$HF1MM$K(B -@code{<>} $B$GI=$9(B. $B$9$J$o$A(B, @code{D} $B$N85$b(B -$BJ,;6I=8=B?9`<0$H$7$FI=$5$l$k(B. $B2C8:;;$O(B, $B2D49$N>l9g$HF1MM$K(B, @code{+}, @code{-} -$B$K$h$j(B -$Bh;;$O(B, $BHs2D49@-$r9MN8$7$F(B @code{dp_weyl_mul()} $B$H$$$&4X?t(B -$B$K$h$j>} as in the case of commutative -polynomial. -That is, elements of @code{D} are represented by distributed polynomials. -Addition and subtraction can be done by @code{+}, @code{-}, -but multiplication is done by calling @code{dp_weyl_mul()} because of -the non-commutativity of @code{D}. -\E - -@example -[0] A=<<1,2,2,1>>; -(1)*<<1,2,2,1>> -[1] B=<<2,1,1,2>>; -(1)*<<2,1,1,2>> -[2] A*B; -(1)*<<3,3,3,3>> -[3] dp_weyl_mul(A,B); -(1)*<<3,3,3,3>>+(1)*<<3,2,3,2>>+(4)*<<2,3,2,3>>+(4)*<<2,2,2,2>> -+(2)*<<1,3,1,3>>+(2)*<<1,2,1,2>> -@end example - -\BJP -$B%0%l%V%J4pDl7W;;$K$D$$$F$b(B, Weyl $BBe?t@lMQ$N4X?t$H$7$F(B, -$BH(B \EG @item References @fref{modfctr}, -@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main}, +@fref{dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_f_main}, \JP @fref{$B9`=g=x$N@_Dj(B}. \EG @fref{Setting term orderings}. @end table +\JP @node bfunction generic_bfct,,, $B%0%l%V%J4pDl$K4X$9$kH!?t(B +\EG @node bfunction generic_bfct,,, Functions for Groebner basis computation +@subsection @code{bfunction}, @code{generic_bfct} +@findex bfunction +@findex generic_bfct +@table @t +@item bfunction(@var{f}) +@item generic_bfct(@var{plist},@var{vlist},@var{dvlist},@var{weight}) +\JP :: b $B4X?t$N7W;;(B +\EG :: Computes the global b function of a polynomial or an ideal +@end table +@table @var +@item return +@itemx f +\JP $BB?9`<0(B +\EG polynomial +@item plist +\JP $BB?9`<0%j%9%H(B +\EG list of polynomials +@item vlist dvlist +\JP $BJQ?t%j%9%H(B +\EG list of variables +@end table +@itemize @bullet +\BJP +@item @samp{bfct} $B$GDj5A$5$l$F$$$k(B. +@item @code{bfunction(@var{f})} $B$OB?9`<0(B @var{f} $B$N(B global b $B4X?t(B @code{b(s)} $B$r(B +$B7W;;$9$k(B. @code{b(s)} $B$O(B, Weyl $BBe?t(B @code{D} $B>e$N0lJQ?tB?9`<04D(B @code{D[s]} +$B$N85(B @code{P(x,s)} $B$,B8:_$7$F(B, @code{P(x,s)f^(s+1)=b(s)f^s} $B$rK~$?$9$h$&$J(B +$BB?9`<0(B @code{b(s)} $B$NCf$G(B, $B\:Y$K$D$$$F$O(B, [SST] $B$r8+$h(B. +\E +\BEG +@item These functions are defined in @samp{bfct}. +@item @code{bfunction(@var{f})} computes the global b-function @code{b(s)} of +a polynomial @var{f}. +@code{b(s)} is a polynomial of the minimal degree +such that there exists @code{P(x,s)} in D[s], which is a polynomial +ring over Weyl algebra @code{D}, and @code{P(x,s)f^(s+1)=b(s)f^s} holds. +@item @code{generic_bfct(@var{f},@var{vlist},@var{dvlist},@var{weight})} +computes the global b-function of a left ideal @code{I} in @code{D} +generated by @var{plist}, with respect to @var{weight}. +@var{vlist} is the list of @code{x}-variables, +@var{vlist} is the list of corresponding @code{D}-variables. +@item See [SST] for the details. +\E +@end itemize + +@example +[0] load("bfct")$ +[216] bfunction(x^3+y^3+z^3+x^2*y^2*z^2+x*y*z); +-9*s^5-63*s^4-173*s^3-233*s^2-154*s-40 +[217] fctr(@@); +[[-1,1],[s+2,1],[3*s+4,1],[3*s+5,1],[s+1,2]] +[218] F = [4*x^3*dt+y*z*dt+dx,x*z*dt+4*y^3*dt+dy, +x*y*dt+5*z^4*dt+dz,-x^4-z*y*x-y^4-z^5+t]$ +[219] generic_bfct(F,[t,z,y,x],[dt,dz,dy,dx],[1,0,0,0]); +20000*s^10-70000*s^9+101750*s^8-79375*s^7+35768*s^6-9277*s^5 ++1278*s^4-72*s^3 +@end example + +@table @t +\JP @item $B;2>H(B +\EG @item References +\JP @fref{Weyl $BBe?t(B}. +\EG @fref{Weyl algebra}. +@end table